15.化簡:$\frac{{cos(\frac{3π}{2}+α)cos(3π-α)tan(-π-α)tan(α-2π)}}{tan(4π-α)sin(5π+α)}$.

分析 由已知利用誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式即可化簡得解.

解答 解:原式=$\frac{sinα(-cosα)(-tanα)tanα}{(-tanα)(-sinα)}$
=(-cosα)tanα
=-sinα

點(diǎn)評 本題主要考查了誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)滿足f(x)=f(x+1)-f(x-1)(x∈R),且f(2)=1,則f(2012)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)曲線y=2015xn+1(n∈N*)在點(diǎn)(1,2015)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn,令an=log2015xn,則a1+a2+…a2014的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列積分值為2的是( 。
A.${∫}_{0}^{1}$2xdxB.01exdxC.${∫}_{1}^{e}$$\frac{1}{x}$dxD.0πsinxdx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某大學(xué)自主招生面試時將20名學(xué)生平均分成甲,乙兩組,其中甲組有4名女學(xué)生,乙組有6名女學(xué)生.現(xiàn)采用分層抽樣(層內(nèi)采用不放回簡單隨即抽樣)從甲、乙兩組中共抽取4名學(xué)生進(jìn)行第一輪面試.
(Ⅰ)求從甲、乙兩組各抽取的人數(shù);
(Ⅱ)求從甲組抽取的學(xué)生中恰有1名女學(xué)生的概率;
(Ⅲ)求抽取的4名學(xué)生中恰有2名男學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知定義在[-1,+∞]上的函數(shù)在區(qū)間[-1,3)上的解析式為f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}}(-1≤x<1)}\\{\frac{3}{2}-\frac{3}{x}×|x-2|(1≤x<3)}\end{array}\right.$,當(dāng)x≥3時,函數(shù)滿足f(x)=f(x-4)+1,若函數(shù)g(x)=f(x)-kx-k有6個零點(diǎn),則實(shí)數(shù)k的取值或取值范圍為( 。
A.($\frac{5}{14}$,$\frac{9+\sqrt{21}}{40}$)B.$\frac{5}{14}$C.($\frac{5}{12}$,$\frac{1}{2}$)D.($\frac{5}{14}$,$\frac{5}{12}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知點(diǎn)P(1,1)和圓C:x2+y2=4,過P的直線l與圓C交于A,B,則弦AB長的最小值為2$\sqrt{2}$;此時的直線l的方程為x+y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.正項(xiàng)數(shù)列{an}滿足:an2-(2n-1)an-2n=0.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)令bn=2n-1 an-n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求f(x)=($\frac{1}{3}$)x+lg${\;}_{\frac{1}{2}}$x(0<x≤2)最小值.

查看答案和解析>>

同步練習(xí)冊答案