20.已知定義在[-1,+∞]上的函數(shù)在區(qū)間[-1,3)上的解析式為f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}}(-1≤x<1)}\\{\frac{3}{2}-\frac{3}{x}×|x-2|(1≤x<3)}\end{array}\right.$,當(dāng)x≥3時(shí),函數(shù)滿足f(x)=f(x-4)+1,若函數(shù)g(x)=f(x)-kx-k有6個(gè)零點(diǎn),則實(shí)數(shù)k的取值或取值范圍為( 。
A.($\frac{5}{14}$,$\frac{9+\sqrt{21}}{40}$)B.$\frac{5}{14}$C.($\frac{5}{12}$,$\frac{1}{2}$)D.($\frac{5}{14}$,$\frac{5}{12}$)

分析 將問題轉(zhuǎn)化為y=f(x)與y=k(x+1)有6個(gè)交點(diǎn),作出函數(shù)圖象,求出兩函數(shù)圖象恰有5個(gè)交點(diǎn)和7個(gè)交點(diǎn)時(shí)的k值,即可得出k的范圍.

解答 解:令g(x)=0得f(x)=k(x+1).
作出y=f(x)與y=k(x+1)的函數(shù)圖象,

由圖象可知M(-1,0)為兩函數(shù)圖象的一個(gè)交點(diǎn).
當(dāng)直線y=k(x+1)與f(x)在[3,4)上的函數(shù)圖象相切時(shí),兩函數(shù)圖象有恰好有5個(gè)交點(diǎn),
設(shè)此時(shí)直線斜率為k1,A(4,1),則tan∠AMx=$\frac{1}{5}$,
∴k1=tan2∠AMx=$\frac{2tan∠AMx}{1-ta{n}^{2}∠AMx}$=$\frac{5}{12}$.
設(shè)B(6,$\frac{5}{2}$),則當(dāng)直線y=k(x+1)經(jīng)過點(diǎn)B時(shí),兩函數(shù)圖象恰好有7個(gè)交點(diǎn),
設(shè)此時(shí)直線斜率為k2,則k2=kBM=$\frac{\frac{5}{2}-0}{6+1}$=$\frac{5}{14}$.
∴k的取值范圍是($\frac{5}{14}$,$\frac{5}{12}$).

點(diǎn)評 本題考查了函數(shù)零點(diǎn)個(gè)數(shù)與函數(shù)圖象的關(guān)系,準(zhǔn)確作出函數(shù)圖象,尋找k的臨界值是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2t}\\{y=1-t}\end{array}\right.$(t為參數(shù)),橢圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),試在橢圓C上求一點(diǎn)P,使得點(diǎn)P到直線l的距離最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.直角坐標(biāo)P(-1,1)的極坐標(biāo)為(ρ>0,0<θ<π)$(\sqrt{2},\frac{3π}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過點(diǎn)P(2,3)且平行于直線2x+y-5=0的直線的方程為( 。
A.2x+y-7=0B.2x-y-7=0C.2x+y+7=0D.2x-y+7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.化簡:$\frac{{cos(\frac{3π}{2}+α)cos(3π-α)tan(-π-α)tan(α-2π)}}{tan(4π-α)sin(5π+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,在正方體ABCD-A1B1C1D1,若點(diǎn)E為A1C1上的一動(dòng)點(diǎn),則直線CE一定垂直于(  )
A.ACB.BDC.A1DD.A1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a=($\frac{2}{3}$)0.2,b=1.30.7,c=($\frac{2}{3}$)${\;}^{\frac{1}{3}}$,則a,b,c的大小關(guān)系是( 。
A.a>c>bB.b>a>cC.c>a>bD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,如果lga-lgc=lg(sinB)=-lg$\sqrt{2}$,且B為銳角,試求A,B,C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)f(x)=x-$\frac{a-1}{x}$-alnx(a∈R).
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)($\frac{1}{2}$,$\frac{1}{2}$+ln2)處的切線方程;
(2)若x=1是函數(shù)f(x)的極大值點(diǎn),求a的取值范圍;
(3)當(dāng)a<1時(shí),在[$\frac{1}{e}$,e]上是否存在一點(diǎn)x0,使f(x0)>e-1成立?說明理由.

查看答案和解析>>

同步練習(xí)冊答案