若x1,x2,x3,…x30這30個(gè)數(shù)據(jù)的平均數(shù)為
.
x
,方差為0.31,則x1,x2,x3,…x30,
.
x
的方差為( 。
A、0.4B、0.3
C、0.04D、1
考點(diǎn):極差、方差與標(biāo)準(zhǔn)差,眾數(shù)、中位數(shù)、平均數(shù)
專(zhuān)題:概率與統(tǒng)計(jì)
分析:根據(jù)平均數(shù)與方差的定義與公式,推導(dǎo)出數(shù)據(jù)x1,x2,x3,…x30
.
x
的平均數(shù)與方差.
解答: 解:根據(jù)題意,∵
.
x
=
x1+x2+x3+…+x30
30

∴x1+x2+x3+…+x30=30
.
x
;
又∵s2=
1
30
[(x1-
.
x
)
2
+(x2-
.
x
)
2
+(x3-
.
x
)
2
+…+(x30-
.
x
)
2
]=0.31,
∴[(x1-
.
x
)
2
+(x2-
.
x
)
2
+(x3-
.
x
)
2
+…+(x30-
.
x
)
2
]=0.31×30;
∴x1,x2,x3,…x30
.
x
的平均數(shù)為
.
x0
=
(x1+x2+x3+…+x30+
.
x
)
31
=
30
.
x
+
.
x
31
=
.
x
,
方差為s02=
1
31
[(x1-
.
x
)
2
+(x2-
.
x
)
2
+(x3-
.
x
)
2
+…+(x30-
.
x
)
2
+(
.
x
-
.
x
)
2
]
=
1
31
[0.31×30+0]=0.3.
故選:B.
點(diǎn)評(píng):本題考查了平均數(shù)與方差的應(yīng)用問(wèn)題,也考查了一定的推理與計(jì)算能力,解題時(shí)應(yīng)根據(jù)平均數(shù)與方差的定義與公式,進(jìn)行推導(dǎo)與計(jì)算,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩種農(nóng)作物品種連續(xù)5季的單位面積平均產(chǎn)量如下(單位:t/hm2),根據(jù)這組數(shù)據(jù),下列說(shuō)法正確的是( 。
品種 第1年 第2年 第3年 第4年 第5年
4.9 4.95 5.05 5 5.1
4.7 5.15 5.4 4.85 4.9
A、甲品種的樣本平均數(shù)大于乙品種的樣本平均數(shù)
B、甲品種的樣本平均數(shù)小于乙品種的樣本平均數(shù)
C、甲品種的樣本方差大于乙品種的樣本方差
D、甲品種的樣本方差小于乙品種的樣本方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的有( 。
(1)用反證法證明:“三角形的內(nèi)角中至少有一個(gè)不大于60°”時(shí)的假設(shè)是“假設(shè)三角形的三個(gè)內(nèi)角都不大于60°;
(2)分析法是從要證明的結(jié)論出發(fā),逐步尋求使結(jié)論成立的充要條件;
(3)用數(shù)學(xué)歸納法證明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1),從k到k+1,左邊需要增乘的代數(shù)式為2(2k+1);
(4)演繹推理是從特殊到一般的推理,其一般模式是三段論.
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線(xiàn)
x2
4
-
y2
5
=1的焦點(diǎn)到漸近線(xiàn)的距離與頂點(diǎn)到漸近線(xiàn)的距離之比為(  )
A、
3
2
B、
2
3
C、2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

①由“若a,b,c∈R,則(ab)c=a(bc)”類(lèi)比“若
a
、
b
c
為三個(gè)向量,則(
a
b
c
=
a
b
c
)”;
②在數(shù)列{an}中,a1=0,an+1=2an+2,猜想an=2n-2;
③在平面內(nèi)“三角形的兩邊之和大于第三邊”類(lèi)比在空間中“四面體的任意三個(gè)面的面積之和大于第四個(gè)面的面積”;上述三個(gè)推理中;
正確的個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sinx在點(diǎn)(
π
3
3
2
)處的切線(xiàn)方程是( 。
A、x+2y-
3
+
π
3
=0
B、x+2y+
3
-
π
3
=0
C、x-2y-
3
+
π
3
=0
D、x-2y+
3
-
π
3
=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,最小值為4的是( 。
A、y=x+
4
x
B、y=sinx+
4
sinx
(0<x<π)
C、y=3x+4•3-x
D、y=log3x+4logx3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

學(xué)校為了了解高二年級(jí)教學(xué)情況,對(duì)清北班、重點(diǎn)班、普通班、藝術(shù)班的學(xué)生做分層抽    樣調(diào)查,假設(shè)學(xué)校高二年級(jí)總?cè)藬?shù)為N,其中清北班有學(xué)生144人,若在清北班、重點(diǎn)班、普通班、藝術(shù)班抽取的人數(shù)分別為18,66,53,24,則總?cè)藬?shù)N為(  )
A、801B、1 288
C、853D、912

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖.用K,A1,A2分別不同的原件連接成一個(gè)系統(tǒng).當(dāng)K正常工作且A1和A2正常工作的概率是0.9,0.8,0.8則系統(tǒng)正常工作的概率為( 。
A、0.960B、0.864
C、0.72D、0.576

查看答案和解析>>

同步練習(xí)冊(cè)答案