已知f(n)=1+(n∈N*),經(jīng)計(jì)算得f(4)>2,f(8)>,f(16)>3,f(32)>,……,觀察上述結(jié)果,則可歸納出一般結(jié)論為     。

試題分析:由題意可化為,同理可化為, ,可化為,可化為,可化為,以此類(lèi)推,可得,,故答案為:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

觀察下列各式:55=3 125,56=15 625,57=78 125,…,則52 011
的末四位數(shù)字為  (  ).
A.3 125B.5 625
C.0 625D.8 125

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如下圖①②③④所示,它們都是由小圓圈組成的圖案.現(xiàn)按同樣的排列規(guī)則進(jìn)行排列,記第個(gè)圖形包含的小圓圈個(gè)數(shù)為,則(Ⅰ)    ;(Ⅱ)的個(gè)位數(shù)字為    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

所有真約數(shù)(除本身之外的正約數(shù))的和等于它本身的正整數(shù)叫做完全數(shù).
如:;
;

已經(jīng)證明:若是質(zhì)數(shù),則是完全數(shù),.請(qǐng)寫(xiě)出一個(gè)四位完全數(shù)       ;又,所以的所有正約數(shù)之和可表示為;
,所以的所有正約數(shù)之和可表示為;
按此規(guī)律,的所有正約數(shù)之和可表示為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

實(shí)驗(yàn)中學(xué)“數(shù)學(xué)王子”張小明在自習(xí)課上,對(duì)正整數(shù)1,2,3,4, 按如下形式排成數(shù)陣好朋友王大安問(wèn)他“由上而下第20行中從左到右的第三個(gè)數(shù)是多少”張小明自上而下逐個(gè)排了兩節(jié)課,終于找到了這個(gè)數(shù),聰明的你一定知道這個(gè)數(shù)是(      )   
                                  
A.190B.191C.192D.193

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè),用反證法證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知f(x+1)=,f(1)=1(x∈N*),猜想f(x)的表達(dá)式為(  )
A.f(x)=B.f(x)=
C.f(x)=D.f(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列{an}…,依它的10項(xiàng)的規(guī)律,則a99+a100的值為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

挪威數(shù)學(xué)家阿貝爾曾經(jīng)根據(jù)階梯形圖形的兩種不同分割(如下圖),利用它們的面積關(guān)系發(fā)現(xiàn)了一個(gè)重要的恒等式——阿貝爾公式:

a1b1+a2b2+a3b3+…+anbn=L1(b1-b2)+L2(b2-b3)+L3(b3-b4)+…+Ln-1(bn-1-bn)+Lnbn,其中L1=a1,則
(Ⅰ)L3           
(Ⅱ)Ln                 

查看答案和解析>>

同步練習(xí)冊(cè)答案