13.曲線C:$\left\{\begin{array}{l}{x=2+5cosθ}\\{y=1+5sinθ}\end{array}\right.$(θ為參數(shù))被直線$\left\{\begin{array}{l}{x=-2+4t}\\{y=-1-3t}\end{array}\right.$(t為參數(shù))截得的弦長為(  )
A.4B.5C.6D.8

分析 曲線C消去參數(shù)θ,得曲線C的普通方程為(x-2)2+(y-1)2=25,直線的參數(shù)方程消去參數(shù)得普通方程為3x+4y+10=0,求出圓心C(2,1)到直線的距離d=4,由此弦長為:2$\sqrt{{r}^{2}-aa0yaak^{2}}$.

解答 解:曲線C:$\left\{\begin{array}{l}{x=2+5cosθ}\\{y=1+5sinθ}\end{array}\right.$(θ為參數(shù)),
消去參數(shù)θ,得曲線C的普通方程為(x-2)2+(y-1)2=25,
曲線C是以C(2,1)為圓心,以r=5為半徑的圓,
直線$\left\{\begin{array}{l}{x=-2+4t}\\{y=-1-3t}\end{array}\right.$(t為參數(shù))消去參數(shù)得普通方程為3x+4y+10=0,
圓心C(2,1)到直線的距離d=$\frac{|6+4+10|}{\sqrt{9+16}}$=4,
∴弦長為:2$\sqrt{{r}^{2}-scmwgyg^{2}}$=2$\sqrt{25-16}$=6.
故選:C.

點(diǎn)評 本題考查弦長的求法,考查參數(shù)方程、直角坐標(biāo)方程的互化等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如果a<b<0,c>d>0,那么一定有( 。
A.$\frac{c}{a}>\fracmgaiumo$B.$\frac{c}{a}<\frack020isc$C.$\frac{c}>\fracssw2ue0{a}$D.$\frac{c}<\fracg0wqiiq{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)(0,$\sqrt{2}$),離心率為$\frac{\sqrt{3}}{3}$.
(1)求橢圓C的方程;
(2)過點(diǎn)P(1,1)分別作斜率為k1、k2的橢圓的動(dòng)弦AB、CD,設(shè)M、N分別為線段AB、CD的中點(diǎn),若k1+k2=1,是否存在一個(gè)定點(diǎn)Q,使得其在直線MN上,若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的短軸端點(diǎn)到右焦點(diǎn)F(1,0)的距離為2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)F的直線交橢圓C于A,B兩點(diǎn),交直線l:x=4于點(diǎn)P,若|PA|=λ1|AF|,|PB|=λ2|BF|,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.等差數(shù)列3,1,-1,-3,…,-93的項(xiàng)數(shù)為(  )
A.52B.51C.49D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),隨機(jī)抽取了6個(gè)試銷售數(shù)據(jù),得到第i個(gè)銷售單價(jià)xi(單位:元)與銷售yi(單位:件)的數(shù)據(jù)資料,算得$\sum_{i=1}^6{{x_i}=51,}\sum_{i=1}^6{{y_i}=480,}\sum_{i=1}^6{{x_i}{y_i}=4066,}\sum_{i=1}^6{{x_i}^2=434.2.}$
(1)求回歸直線方程$\hat y=\hat bx+\hat a$;
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤=銷售收入-成本)
附:回歸直線方程$\hat y=\hat bx+\hat a$中,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$是樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某種平面分形如圖所示,以及分形圖是有一點(diǎn)出發(fā)的三條線段,二級分形圖是在一級分形圖的每條線段的末端出發(fā)在生成兩條線段,…,依次規(guī)律得到n級分形圖,那么n級分形圖中共有3•2n-3條線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{3-{x}^{2}}{1+{x}^{2}}$.
(1)計(jì)算f(3),f(4),f($\frac{1}{3}$)及f($\frac{1}{4}$)的值;
(2)由(1)的結(jié)果猜想一個(gè)普遍的結(jié)論,并加以證明;
(3)求值f(1)+f(2)+…+f(2017)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2017}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知命題p:曲線C:(m+2)x2+my2=1表示雙曲線,命題q:方程y2=(m2-1)x表示的曲線是焦點(diǎn)在x軸的負(fù)半軸上的拋物線,若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案