6.已知復(fù)數(shù)z=-1+i,則復(fù)數(shù)$\frac{z+3}{\overline z+2}$的模為( 。
A.$\sqrt{10}$B.$\frac{{\sqrt{10}}}{2}$C.$\sqrt{2}$D.2

分析 把z代入$\frac{z+3}{\overline z+2}$,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式求解.

解答 解:∵z=-1+i,
∴$\frac{z+3}{\overline z+2}$=$\frac{-1+i+3}{-1-i+2}=\frac{2+i}{1-i}$=$\frac{(2+i)(1+i)}{(1-i)(1+i)}=\frac{1+3i}{2}=\frac{1}{2}+\frac{3}{2}i$,
∴復(fù)數(shù)$\frac{z+3}{\overline z+2}$的模為$\sqrt{\frac{1}{4}+\frac{9}{4}}=\frac{\sqrt{10}}{2}$.
故選:B.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖在平行四邊形ABCD中,O是AC與BD的交點(diǎn),P、Q、M、N分別是線段OA、OB、OC、OD的中點(diǎn).在A、P、M、C中任取一點(diǎn)記為E,在B、Q、N、D中任取一點(diǎn)記為F.設(shè)G為滿足向量$\overrightarrow{OG}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$的點(diǎn),則在上述的點(diǎn)G組成的集合中的點(diǎn),落在平行四邊形ABCD外(不含邊界)的概率為( 。
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1,直線L:x+2y-10=0.
(1)橢圓上是否存在點(diǎn)M,它到直線L的距離最小?若存在,則求出M點(diǎn)坐標(biāo)和最小距離.
(2)橢圓上是否存在點(diǎn)P,它到直線L的距離最大?若存在,則求出P點(diǎn)坐標(biāo)和最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在等差數(shù)列{an}中,已知a2+a3=13,a1=2,則a4+a5+a6=42.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖,JA,JB兩個(gè)開(kāi)關(guān)串聯(lián)再與開(kāi)關(guān)JC并聯(lián),在某段時(shí)間內(nèi)每個(gè)開(kāi)關(guān)能夠閉合的概率都是0.5,計(jì)算在這段時(shí)間內(nèi)線路正常工作的概率為0.625.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若x,y滿足條件$\left\{\begin{array}{l}3x-5y+6≥0\\ 2x+3y-15≤0\\ y≥0\end{array}$,則z=$\frac{1}{2}$x+y的最大值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知f(x)=x2-ax+lnx,a∈R.
(1)若a=0,求函數(shù)y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在[$\frac{1}{2}$,1]上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)令g(x)=x2-f(x),x∈(0,e](e是自然對(duì)數(shù)的底數(shù));求當(dāng)實(shí)數(shù)a等于多少時(shí),可以使函數(shù)g(x)取得最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在銳角△ABC 中,A,B,C的對(duì)邊為a,b,c,A=2B,則$\frac{a}$的取值范圍是($\sqrt{2}$,$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知定義在R上的函數(shù)f(x)=x2+2ax+3在(-∞,1]上是減函數(shù),當(dāng)x∈[a+1,1]時(shí),f(x)的最大值與最小值之差為g(a),則g(a)的最小值為(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案