16.如圖在平行四邊形ABCD中,O是AC與BD的交點(diǎn),P、Q、M、N分別是線段OA、OB、OC、OD的中點(diǎn).在A、P、M、C中任取一點(diǎn)記為E,在B、Q、N、D中任取一點(diǎn)記為F.設(shè)G為滿足向量$\overrightarrow{OG}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$的點(diǎn),則在上述的點(diǎn)G組成的集合中的點(diǎn),落在平行四邊形ABCD外(不含邊界)的概率為(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

分析 利用對(duì)立事件的概率公式求解即可.

解答 解:基本事件的總數(shù)是4×4=16,
在$\overrightarrow{OG}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$中,當(dāng)$\overrightarrow{OG}$=$\overrightarrow{OP}$+$\overrightarrow{OQ}$,$\overrightarrow{OG}$=$\overrightarrow{OP}$+$\overrightarrow{ON}$,$\overrightarrow{OG}$=$\overrightarrow{ON}$+$\overrightarrow{OM}$,$\overrightarrow{OG}$=$\overrightarrow{OM}$+$\overrightarrow{OQ}$時(shí),點(diǎn)G分別為該平行四邊形各邊的中點(diǎn),此時(shí)點(diǎn)G在平行四邊形的邊界上,而其余情況的點(diǎn)G都在平行四邊形外,
故所求的概率是1-$\frac{4}{16}$=$\frac{3}{4}$.
故選:C.

點(diǎn)評(píng) 本題考查對(duì)立事件的概率公式,考查向量知識(shí)的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.學(xué)校生態(tài)園計(jì)劃移栽甲乙兩種植物各2株,設(shè)甲、乙兩種植物的成活率分別是$\frac{2}{3}$和$\frac{1}{2}$,且各株植物是否成活互不影響,求移栽的4株植物中:
(1)恰成活一株的概率;
(2)成活的株數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知正四棱柱ABCD-A1B1C1D1中,AA1=4,AB=2,E是AA1的中點(diǎn),則異面直線D1C與BE所成角的余弦值為( 。
A.$\frac{1}{5}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{\sqrt{10}}{10}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=$\frac{{\sqrt{1-{x^2}}}}{x}$的定義域?yàn)椋ā 。?table class="qanwser">A.[-1,0)∪(0,1]B.[-1,1]C.[-1,0)∪(0,1)D.[-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{{\sqrt{2}}}{2}$,P是橢圓上一點(diǎn),且△PF1F2面積的最大值為1.
(I)求橢圓的方程;
(II)過(guò)F2的直線交橢圓于M,N兩點(diǎn),求$\overrightarrow{{F_2}M}$•$\overrightarrow{{F_2}N}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={x|x≥a},B={x|1≤x<2},且A∪∁RB=R,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,1]B.(-∞,1)C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知f(x)=m(x-2m)(x+m+3),g(x)=2x-4.若同時(shí)滿足條件:
①?x∈R,f(x)<0 或g(x)<0;
②?x∈(-∞,-4),f(x)g(x)<0.
求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.為了得到函數(shù)y=$\sqrt{2}$cos3x的圖象,可以將函數(shù)y=sin3x+cos3x的圖象(  )
A.向右平移$\frac{π}{4}$個(gè)單位B.向左平移$\frac{π}{4}$個(gè)單位
C.向右平移$\frac{π}{12}$個(gè)單位D.向左平移$\frac{π}{12}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知復(fù)數(shù)z=-1+i,則復(fù)數(shù)$\frac{z+3}{\overline z+2}$的模為( 。
A.$\sqrt{10}$B.$\frac{{\sqrt{10}}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案