16.計算
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-$\frac{3}{5}$)0+($\frac{8}{27}$)${\;}^{-\frac{1}{3}}$;
(2)(log43+log83)•(2log32+log92)

分析 (1)化帶分數(shù)為假分數(shù),再由有理指數(shù)冪的運算性質(zhì)化簡求值;
(2)直接利用對數(shù)的運算性質(zhì)化簡求值.

解答 解:(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-$\frac{3}{5}$)0+($\frac{8}{27}$)${\;}^{-\frac{1}{3}}$=$[(\frac{3}{2})^{2}]^{\frac{1}{2}}-1+[(\frac{2}{3})^{3}]^{-\frac{1}{3}}$=$\frac{3}{2}-1+\frac{3}{2}=2$;
(2)(log43+log83)•(2log32+log92)=$(\frac{lg3}{2lg2}+\frac{lg3}{3lg2})•(\frac{2lg2}{lg3}+\frac{lg2}{2lg3})$
=$\frac{lg\sqrt{3}+lg\root{3}{3}}{lg2}•\frac{lg4+lg\sqrt{2}}{lg3}$=$\frac{\frac{5}{6}lg3}{lg2}•\frac{\frac{5}{2}lg2}{lg3}=\frac{25}{12}$.

點評 本題考查對數(shù)的運算性質(zhì)及有理指數(shù)冪的運算性質(zhì),是基礎(chǔ)的計算題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,a2-ab-2b2=0.
(1)若$B=\frac{π}{6}$,求C;
(2)若$C=\frac{2π}{3}$,c=14,求S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.計算${({\frac{1+i}{1-i}})^{2017}}$=( 。
A.-1B.iC.-iD.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等比數(shù)列{an}的公比為q(q≠1),等差數(shù)列{bn}的公差也為q,且a1+2a2=3a3
(Ι)求q的值;
(II)若數(shù)列{bn}的首項為2,其前n項和為Tn,當n≥2時,試比較bn與Tn的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知直線l1過直線l2:x+2y=0與l3:2x+2y-1=0的交點,與圓x2+y2+2y=0相切,則直線l1的方程是( 。
A.3x+4y-1=0B.3x+4y+9=0或x=1C.3x+4y+9=0D.3x+4y-1=0或x=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦點為F1,F(xiàn)2,且C上的點P滿足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=0,|PF1|=3,|PF2|=4,則雙曲線C的離心率為(  )
A.$\frac{{\sqrt{10}}}{2}$B.$\sqrt{5}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的左焦點作直線l與雙曲線交于A,B兩點,使得|AB|=4,若這樣的直線有且僅有兩條,則a的取值范圍是(  )
A.(0,$\frac{1}{2}$)B.(2,+∞)C.($\frac{1}{2}$,2)D.(0,$\frac{1}{2}$)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標系xOy中,已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+t}\\{y=\sqrt{3}t}\end{array}}\right.$(t為參數(shù)),橢圓C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosθ\\ y=\sqrt{3}sinθ\end{array}$ (θ為參數(shù))(1).直線l的極坐標方程與橢圓C的普通方程(2)設(shè)P(1,0)直線l與橢圓C相交于A,B兩點,求線段||PA|-|PB||的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ax3-5x2-bx,a,b∈R,x=3是f(x)的極值點,且f(1)=-1.
(1)求實數(shù)a,b的值;
(2)求f(x)在[2,4]上的最小值和最大值.

查看答案和解析>>

同步練習冊答案