【題目】設(shè)函數(shù) ).

(Ⅰ)若直線和函數(shù)的圖象相切,求的值;

(Ⅱ)當(dāng)時,若存在正實數(shù),使對任意,都有恒成立,求的取值范圍.

【答案】(Ⅰ);(Ⅱ) .

【解析】試題分析:設(shè)切點,求切線方程,根據(jù)直線重合求解即可;不等式等價于,即.設(shè),研究函數(shù)的單調(diào)性,討論參數(shù) ,分別令 即可.

試題解析:(Ⅰ)設(shè)切點的坐標(biāo)為,由,得

∴切線方程為,即

由已知為同一直線,所以, ,

,則,

當(dāng)時, , 單調(diào)遞增,當(dāng)時, , 單調(diào)遞減,

,

當(dāng)且僅當(dāng)時等號成立,∴,

(Ⅱ)①當(dāng)時,由(Ⅰ)結(jié)合函數(shù)的圖象知:

存在,使得對于任意,都有,

則不等式等價于,即

設(shè),

,得;由,得

, ,∵,∴上單調(diào)遞減,

,

∴對任意, ,與題設(shè)不符.

, ,∴上單調(diào)遞增,

,∴對任意 符合題設(shè),

此時取,可得對任意,都有

②當(dāng)時,由(Ⅰ)結(jié)合函數(shù)的圖象知),

對任意都成立,

等價于

設(shè),則w,

,得; ,得,

上單調(diào)遞減,注意到

∴對任意, ,不符合題設(shè).

綜上所述, 的取值范圍為

【方法點晴】本題主要考查導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)求函數(shù)的最值以及不等式恒成立問題,屬于難題.不等式恒成立問題常見方法:① 分離參數(shù)恒成立(可)或恒成立(即可);② 數(shù)形結(jié)合(圖象在 上方即可);③ 討論最值恒成立;④ 討論參數(shù).本題是利用方法④求得的范圍的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為的圓形紙板內(nèi)有一個相同圓心的半徑為的小圓,現(xiàn)將半徑為的一枚硬幣拋到此紙板上,使整塊硬幣完全隨機(jī)落在紙板內(nèi),則硬幣與小圓無公共點的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知 tanAtanB﹣tanA﹣tanB=
(1)求∠C的大。
(2)設(shè)角A,B,C的對邊依次為a,b,c,若c=2,且△ABC是銳角三角形,求a2+b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【廣東省惠州市2017屆高三上學(xué)期第二次調(diào)研】已知點,點是圓上的任意一點,線段的垂直平分線與直線交于點

)求點的軌跡方程

)若直線與點的軌跡有兩個不同的交點,且原點總在以為直徑的圓的內(nèi)部,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知動直線過點,且與圓交于、兩點.

(1)若直線的斜率為,求的面積;

(2)若直線的斜率為,點是圓上任意一點,求的取值范圍;

(3)是否存在一個定點(不同于點),對于任意不與軸重合的直線,都有平分,若存在,求出定點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇.

方案甲:員工最多有兩次抽獎機(jī)會,每次抽獎的中獎率均為,第一次抽獎,若未中獎,則抽獎結(jié)束,若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎。規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進(jìn)行第二次抽獎;若正面朝上,員工則須進(jìn)行第二次抽獎,且在第二次抽獎中,若中獎,則獲得1000元;若未中獎,則所獲得獎金為0元.

方案乙:員工連續(xù)三次抽獎,每次中獎率均為,每次中獎均可獲得獎金400元.

(1)求某員工選擇方案甲進(jìn)行抽獎所獎金(元)的分布列;

(2)試比較某員工選擇方案乙與選擇方案甲進(jìn)行抽獎,哪個方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓 的上、下頂點分別為A,B,點P在橢圓上,且異于點A,B,直線AP,BP與直線 分別交于點M,N,

1設(shè)直線AP,BP的斜率分別為 ,求證: 為定值;

2求線段MN的長的最小值;

3)當(dāng)點P運動時,以MN為直徑的圓是否經(jīng)過某定點?請證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,∠BAC=90°,AB=AC=2, .M,N分別為BC和CC1的中點,P為側(cè)棱BB1上的動點.

(1)求證:平面APM⊥平面BB1C1C;
(2)若P為線段BB1的中點,求證:A1N∥平面APM;
(3)試判斷直線BC1與平面APM是否能夠垂直.若能垂直,求PB的值;若不能垂直,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】傳統(tǒng)文化就是文明演化而匯集成的一種反映民族特質(zhì)和風(fēng)貌的民族文化,是民族歷史上各種思想文化、觀念形態(tài)的總體表征.教育部考試中心確定了2017年普通高考部分學(xué)科更注重傳統(tǒng)文化考核.某校為了了解高二年級中國數(shù)學(xué)傳統(tǒng)文化選修課的教學(xué)效果,進(jìn)行了一次階段檢測,并從中隨機(jī)抽取80名同學(xué)的成績,然后就其成績分為五個等級進(jìn)行數(shù)據(jù)統(tǒng)計如下:

根據(jù)以上抽樣調(diào)查數(shù)據(jù),視頻率為概率.

(1)若該校高二年級共有1000名學(xué)生,試估算該校高二年級學(xué)生獲得成績?yōu)?/span>的人數(shù);

(2)若等級分別對應(yīng)100分、80分、60分、40分、20分,學(xué)校要求“平均分達(dá)60分以上”為“教學(xué)達(dá)標(biāo)”,請問該校高二年級此階段教學(xué)是否達(dá)標(biāo)?

(3)為更深入了解教學(xué)情況,將成績等級為的學(xué)生中,按分層抽樣抽取7人,再從中任意抽取3名,求抽到成績?yōu)?/span>的人數(shù)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案