【題目】(本小題滿分12分) 已知中心在原點,焦點在軸上的橢圓C的離心率為,且經(jīng)過點.
(1)求橢圓C的方程;
(2)是否存在過點的直線與橢圓C相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由.
【答案】(1);(2).
【解析】
試題分析:(1)設(shè)橢圓的方程,若焦點明確,設(shè)橢圓的標(biāo)準(zhǔn)方程,結(jié)合條件用待定系數(shù)法求出的值,若不明確,需分焦點在軸和軸上兩種情況討論;(2)解決直線和橢圓的綜合問題時注意:第一步:根據(jù)題意設(shè)直線方程,有的題設(shè)條件已知點,而斜率未知;有的題設(shè)條件已知斜率,點不定,可由點斜式設(shè)直線方程.第二步:聯(lián)立方程:把所設(shè)直線方程與橢圓的方程聯(lián)立,消去一個元,得到一個一元二次方程.第三步:求解判別式:計算一元二次方程根.第四步:寫出根與系數(shù)的關(guān)系.第五步:根據(jù)題設(shè)條件求解問題中結(jié)論.
試題解析:(1)設(shè)橢圓C的方程為, 2分
由題意得 4分
解得a2=4,b2=3.故橢圓C的方程為. 6分
(2)假設(shè)存在直線l1且由題意得斜率存在,設(shè)滿足條件的方程為y=k1(x-2)+1,
代入橢圓C的方程得,(3+4)x2-8k1(2k1-1)x+16-16k1-8=0. 7分
因為直線l1與橢圓C相交于不同的兩點A,B,
設(shè)A,B兩點的坐標(biāo)分別為(x1,y1),(x2,y2),
所以Δ=[-8k1(2k1-1)]2-4(3+4)·(16-16k1-8)=32(6k1+3)>0,所以k1>. 8分
又x1+x2=,x1x2=, 9分
因為,
即(x1-2)(x2-2)+(y1-1)(y2-1)=,所以(x1-2)(x2-2)(
即[x1x2-2(x1+x2)+4](1+)=.
所以, 10分
解得k1=±.因為k1>-,所以k1=.于是存在直線l1滿足條件,其方程為y=x. 12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,左、右頂點分別為為直徑的圓O過橢圓E的上頂點D,直線DB與圓O相交得到的弦長為.設(shè)點,連接PA交橢圓于點C.
(I)求橢圓E的方程;
(II)若三角形ABC的面積不大于四邊形OBPC的面積,求t的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,E是PC的中點,作EF⊥PB交PB于點F.
(1)證明 PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求VB﹣EFD .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+6.
(1)當(dāng)a=5時,解不等式f(x)<0;
(2)若不等式f(x)>0的解集為R,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:
來源: 題型:【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若實數(shù)a滿足f(lga)+f(lg )≤2f(1),則a的取值范圍是( )
A.(﹣∞,10]
B.[ ,10]
C.(0,10]
D.[ ,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個多面體的直觀圖和三視圖如圖,M是A1B的中點,N是棱B1C1上的任意一點(含頂點).
①當(dāng)點N是棱B1C1的中點時,MN∥平面ACC1A1;
②MN⊥A1C;
③三棱錐N﹣A1BC的體積為VN﹣A BC= a3;
④點M是該多面體外接球的球心.
其中正確的是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:方程 =1表示焦點在y軸上的橢圓;命題q:雙曲線 ﹣ =1的離心率e∈(1,2).若命題p、q有且只有一個為真,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c,cos(A﹣C)+cosB= ,b2=ac,求B.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com