【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若實(shí)數(shù)a滿足f(lga)+f(lg )≤2f(1),則a的取值范圍是( )
A.(﹣∞,10]
B.[ ,10]
C.(0,10]
D.[ ,1]
【答案】B
【解析】解:∵函數(shù)f(x)是定義在R上的偶函數(shù),
∴f(lga)+f(lg )≤2f(1),等價為f(lga)+f(﹣lga)=2f(lga)≤2f(1),
即f(lga)≤f(1).
∵函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)單調(diào)遞增,
∴f(lga)≤f(1)等價為f(|lga|)≤f(1).
即|lga|≤1,
∴﹣1≤lga≤1,
解得 ≤a≤10,
故選:B.
【考點(diǎn)精析】關(guān)于本題考查的奇偶性與單調(diào)性的綜合,需要了解奇函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相反的單調(diào)性才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱與四邊形BDEF相交于BD, 平面ABCD,DE//BF,BF=2DE,AF⊥FC,M為CF的中點(diǎn), .
(I)求證:GM//平面CDE;
(II)求證:平面ACE⊥平面ACF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c.
(Ⅰ)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比數(shù)列,且c=2a,求cosB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓x2+y2+x﹣6y+m=0與直線x+2y﹣3=0相交于P,Q兩點(diǎn),O為原點(diǎn),且OP⊥OQ,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分) 已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓C的離心率為,且經(jīng)過點(diǎn).
(1)求橢圓C的方程;
(2)是否存在過點(diǎn)的直線與橢圓C相交于不同的兩點(diǎn),滿足?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:x+my+1=0和l2:(m﹣3)x﹣2y+(13﹣7m)=0.
(1)若l1⊥l2 , 求實(shí)數(shù)m的值;
(2)若l1∥l2 , 求l1與l2之間的距離d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差(°C) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,側(cè)面PCD⊥底面ABCD,PD⊥CD,E為PC中點(diǎn),底面ABCD是直角梯形.AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求證:BE∥平面APD;
(Ⅱ)求證:BC⊥平面PBD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com