【題目】設△ABC的內角A、B、C的對邊長分別為a、b、c,cos(A﹣C)+cosB= ,b2=ac,求B.
【答案】解:由cos(A﹣C)+cosB= 及B=π﹣(A+C)得 cos(A﹣C)﹣cos(A+C)= ,
∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)= ,
∴sinAsinC= .
又由b2=ac及正弦定理得sin2B=sinAsinC,
故 ,
∴ 或 (舍去),
于是B= 或B= .
又由b2=ac
知b≤a或b≤c
所以B=
【解析】本題考查三角函數(shù)化簡及解三角形的能力,關鍵是注意角的范圍對角的三角函數(shù)值的制約,并利用正弦定理得到sinB= (負值舍掉),從而求出答案.
【考點精析】認真審題,首先需要了解同角三角函數(shù)基本關系的運用(同角三角函數(shù)的基本關系:;;(3) 倒數(shù)關系:),還要掌握正弦定理的定義(正弦定理:)的相關知識才是答題的關鍵.
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分) 已知中心在原點,焦點在軸上的橢圓C的離心率為,且經過點.
(1)求橢圓C的方程;
(2)是否存在過點的直線與橢圓C相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知中心在原點,焦點在軸上的橢圓的一個焦點為, 是橢圓上的一個點.
(1)求橢圓的標準方程;
(2)設橢圓的上、下頂點分別為, ()是橢圓上異于的任意一點, 軸, 為垂足, 為線段中點,直線交直線于點, 為線段的中點,如果的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,記長方體ABCD﹣A1B1C1D1被平行于棱B1C1的平面EFGH截去右上部分后剩下的幾何體為Ω,則下列結論中不正確的是( )
A.EH∥FG
B.四邊形EFGH是平行四邊形
C.Ω是棱柱
D.Ω是棱臺
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ()
(Ⅰ)討論的單調性;
(Ⅱ)證明:當時,函數(shù)()有最小值.記的最小值為,求的值域;
(Ⅲ)若存在兩個不同的零點, (),求的取值范圍,并比較與0的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,側面PCD⊥底面ABCD,PD⊥CD,E為PC中點,底面ABCD是直角梯形.AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求證:BE∥平面APD;
(Ⅱ)求證:BC⊥平面PBD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,M和N分別為BC、C1C的中點,那么異面直線MN與AC所成的角等于( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設向量 =(sinx,cosx), =(cosx,sinx),x∈R,函數(shù)f(x)= ( ﹣ ).
(1)求函數(shù)f(x)的最小正周期;
(2)當x∈[- , ]時,求函數(shù)f(x)的值域.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com