14.已知復(fù)數(shù)z=$\frac{1-\sqrt{3}i}{\sqrt{3}+i}$,$\overline{z}$是z的共軛復(fù)數(shù),則$\overrightarrow{z}$的模等于1.

分析 利用復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義、模的計算公式即可得出.

解答 解:復(fù)數(shù)z=$\frac{1-\sqrt{3}i}{\sqrt{3}+i}$=$\frac{-i(i+\sqrt{3})}{\sqrt{3}+i}$=-i,
∴$\overline{z}$=i,
則|$\overrightarrow{z}$|=1.
故答案為:1.

點評 本題考查了復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義、模的計算公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知F1,F(xiàn)2為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點,O是坐標原點,過F2作垂直于x軸的直線MF2交橢圓于M($\sqrt{2}$,1).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過左焦點F1的直線l與橢圓C交于A、B兩點,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足:b1=1,b2=$\frac{1}{3}$,anbn+1+bn+1=nbn,則{bn}的前n項和為$\frac{3}{2}$(1-$\frac{1}{{3}^{n}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)z=kx+y,其中實數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+4≥0}\\{2x-y-4≤0}\end{array}\right.$若z的最大值為12,則實數(shù)k=( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)y=$\frac{\sqrt{2-x}}{ln(x-1)}$的定義域是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)向量$\overrightarrow{a}$、$\overrightarrow$滿足:|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$•$\overrightarrow$=1,則$\overrightarrow{a}$與$\overrightarrow$的夾角是(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和為Sn,且滿足a1=$\frac{1}{2}$,an+2SnSn-1=0(n≥2)
(1)求an和Sn
(2)求證:S12+S22+S32+…+Sn2≤$\frac{1}{2}$-$\frac{1}{4n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)M=a+$\frac{1}{a-2}$(2<a<3).N=x(4$\sqrt{3}$-3x)(0<x<$\frac{4\sqrt{3}}{3}$),則M,N的大小關(guān)系為( 。
A.M>NB.M<NC.M≥ND.M≤N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若(x+1)n=xn+…+ax3+bx2+…+1(n∈N*),且a:b=3:1,則n的值為11.

查看答案和解析>>

同步練習(xí)冊答案