3.為研究語文成績和英語成績之間是否具有線性相關關系,統(tǒng)計兩科成績得到如圖所示的散點圖(兩坐標軸單位長度相同),用回歸直線$\hat y$=$\hat b$x+$\hat a$近似地刻畫其相關系,根據(jù)圖形,以下結(jié)論最有可能成立的是( 。
A.線性相關關系較強,b的值為3.25B.線性相關關系較強,b的值為0.83
C.線性相關關系較強,b的值為-0.87D.線性相關關系太弱,無研究價值

分析 根據(jù)散點圖中點的分布特點即可得到結(jié)論.

解答 解:由散點圖可得,點的分布比較集中在一條直線賦值,
∴語文成績和英語成績之間具有線性相關關系,
且線性相關關系較強,由于所有的點都在直線y=x的下方,
∴回歸直線的斜率小于1,
故結(jié)論最有可能成立的是B,
故選:B.

點評 本題主要考查散點圖的應用,根據(jù)圖象是解決本題的關鍵,本題屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.設拋物線C1:y2=4x的準線與x軸交于點F1,焦點為F2,橢圓C2以F1,F(xiàn)2為焦點且橢圓C2上的點到F1的距離的最大值為3.
(1)求橢圓的標準方程;
(2)直線l經(jīng)過橢圓C2的右焦點F2,與拋物線C1交于A1、A2兩點,與橢圓C2交于B1、B2兩點,當以B1B2為直徑的圓經(jīng)過F1時,求|A1A2|的長;
(3)若M是橢圓上的動點,以M為圓心,MF2為半徑作⊙M是否存在定圓⊙N,使得⊙M與⊙N恒相切,若存在,求出⊙N的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知數(shù)列{an}滿足:a1=1,an=2an-1+1(n≥2),則a4=15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知銳角△ABC中內(nèi)角A、B、C所對邊的邊長分別為a、b、c,滿足a2+b2=6abcosC,且sin2C=2$\sqrt{3}$sinAsinB,角C=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設函數(shù)f(x)=$\frac{1}{3}$ax3-2x2+cx在R上單調(diào)遞增且ac≤4,則$\frac{a}{{c}^{2}+4}$+$\frac{c}{{a}^{2}+4}$的最小值為( 。
A.0B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.對于任意正整數(shù)n,猜想2n-1與(n+1)2的大小關系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.過原點向圓x2+y2-2x-4y+4=0引切線,則切線方程為y=$\frac{3}{4}$x或x=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知△ABC的面積為3$\sqrt{15}$,b-c=2,cosA=-$\frac{1}{4}$,則a的值為( 。
A.64B.$4\sqrt{15}$C.8D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知點P(x,y)(xy≠0)是橢圓$\frac{x^2}{16}$+$\frac{y^2}{8}$=1上動點,F(xiàn)1、F2為橢圓的左,右焦點,?λ∈R+,使得$\overrightarrow{PM}$=λ(${\frac{{\overrightarrow{P{F_1}}}}{{|{\overrightarrow{P{F_1}}}|}}$+$\frac{{\overrightarrow{P{F_2}}}}{{|{\overrightarrow{P{F_2}}}|}}}$),且$\overrightarrow{{F_1}M}$•$\overrightarrow{MP}$=0,則|$\overrightarrow{OM}}$|的取值范圍為(0,2$\sqrt{2}$).

查看答案和解析>>

同步練習冊答案