分析 延長F2M交PF1于點N,由題意可知△PNF2為等腰三角形,得OM是△PF1F2的中位線.利用三角形中位線定理和橢圓的定義,算出|OM|=a-|PF2|,再由橢圓的焦半徑|PF2|的取值范圍加以計算,即可得到|OM|的取值范圍.
解答 解:如圖,延長PF2、F1M,交與N點,連接OM
∵$\overrightarrow{PM}$=λ(${\frac{{\overrightarrow{P{F_1}}}}{{|{\overrightarrow{P{F_1}}}|}}$+$\frac{{\overrightarrow{P{F_2}}}}{{|{\overrightarrow{P{F_2}}}|}}}$),且$\overrightarrow{{F_1}M}$•$\overrightarrow{MP}$=0,
∴PM是∠F1PF2,且F1M⊥MP,
∴|PN|=|PF1|,M為F1F2中點,
∵O為F1F2中點,M為F1N中點
∴|OM|=$\frac{1}{2}$|F2N|=$\frac{1}{2}$||PN|-|PF2||=$\frac{1}{2}$||PF1|-|PF2||
設P點坐標為(x0,y0)
∵在橢圓$\frac{x^2}{16}$+$\frac{y^2}{8}$=1,離心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$
由圓錐曲線的統(tǒng)一定義,得|PF1|=a+ex0,|PF2|=a-ex0,
∴||PF1|-|PF2||=|a+ex0+a-ex0|=|2ex0|=$\sqrt{2}$|x0|
∵P點在橢圓$\frac{x^2}{16}$+$\frac{y^2}{8}$=1上,∴|x0|∈[0,4],
又∵x≠0,y≠0,可得|x0|∈(0,4),∴|OM|∈(0,2$\sqrt{2}$).
故答案為:(0,2$\sqrt{2}$).
點評 本題給出橢圓焦點三角形角平分線的垂線,求垂足到橢圓中心距離的范圍.著重考查了橢圓的定義與簡單幾何性質、等腰三角形的判定與性質和三角形中位線定理等知識,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 線性相關關系較強,b的值為3.25 | B. | 線性相關關系較強,b的值為0.83 | ||
C. | 線性相關關系較強,b的值為-0.87 | D. | 線性相關關系太弱,無研究價值 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com