20.設(shè)函數(shù)f(x)=$\frac{{x}^{3}}{3}$-$\frac{3a+2}{2}$x2+6ax+b,其中a,b∈R.
(1)若函數(shù)f(x)在x=1處取得極值-$\frac{1}{6}$,求a,b的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

分析 (1)求出f′(x)=x2-(3a+2)x+6a,由函數(shù)f(x)在x=1處取得極值-$\frac{1}{6}$,列出方程組,能求出a,b.
(2)由f′(x)=x2-3x+2,利用導(dǎo)數(shù)性質(zhì)能求出函數(shù)f(x)的單調(diào)遞增區(qū)間.

解答 解:(1)∵f(x)=$\frac{{x}^{3}}{3}$-$\frac{3a+2}{2}$x2+6ax+b,其中a,b∈R,
∴f′(x)=x2-(3a+2)x+6a,
∵函數(shù)f(x)在x=1處取得極值-$\frac{1}{6}$,
∴$\left\{\begin{array}{l}{f(1)=\frac{1}{3}-\frac{3a+2}{2}+6a+b=-\frac{1}{6}}\\{{f}^{'}(1)=1-(3a+2)+6a=0}\end{array}\right.$,
解得a=$\frac{1}{3}$,b=-1.
(2)由(1)得f(x)=$\frac{{x}^{3}}{3}$-$\frac{3}{2}{x}^{2}$+2x-1,
∴f′(x)=x2-3x+2,
由f′(x)=x2-3x+2>0,得x>2或x<1,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,1],[2,+∞).

點(diǎn)評 本題考查導(dǎo)數(shù)及其應(yīng)用、不等式、函數(shù)等基礎(chǔ)知識,考查考查推理論證能力、運(yùn)算求解能力、抽象概括能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想、分類與整合思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx.
(1)證明:當(dāng)x>1時(shí),$x+1-\frac{{2({x-1})}}{f(x)}>0$;
(2)若函數(shù)g(x)=f(x)+x-ax2有兩個(gè)零點(diǎn)x1,x2(x1<x2,a>0),證明:$g'({\frac{{{x_1}+2{x_2}}}{3}})<1-a$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在等比數(shù)列{an}中,a1=1,a3=2a2,數(shù)列{an}前n項(xiàng)和Sn為( 。
A.Sn=2n-1B.Sn=2n-1C.Sn=n2D.Sn=2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.我校在高三11月月考中約有1000名理科學(xué)生參加考試,數(shù)學(xué)考試成績ξ~N(100,a2)(a>0,滿分150分),統(tǒng)計(jì)結(jié)果顯示數(shù)學(xué)考試成績在80分到120分之間的人數(shù)約為總?cè)藬?shù)的60%,則此次月考中數(shù)學(xué)成績不低于120分的學(xué)生約有200人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=3x+9x,則f(log32)=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{-2x+y+5≥0}\end{array}\right.$,則z=2x+y的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知集合A={1,2,3,4},B={x|log2(x-1)<2},則A∩B={2,3,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,矩形ABCD中,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,M為DC的中點(diǎn),將△DAM沿AM折到△D′AM的位置,AD′⊥BM.
(1)求證:平面D′AM⊥平面ABCM;
(2)若E為D′B的中點(diǎn),求二面角E-AM-D′的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.現(xiàn)行普通高中學(xué)生在高一升高二時(shí)面臨著選文理科的問題,學(xué)校抽取了部分男、女學(xué)生意愿的一份樣本,制作出如下兩個(gè)等高堆積條形圖:

根據(jù)這兩幅圖中的信息,下列哪個(gè)統(tǒng)計(jì)結(jié)論是不正確的( 。
A.樣本中的女生數(shù)量多于男生數(shù)量
B.樣本中有理科意愿的學(xué)生數(shù)量多于有文科意愿的學(xué)生數(shù)量
C.樣本中的男生偏愛理科
D.樣本中的女生偏愛文科

查看答案和解析>>

同步練習(xí)冊答案