【題目】在直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸,選擇相同的單位長(zhǎng)度建立極坐標(biāo)系,圓極坐標(biāo)方程為.

(Ⅰ)當(dāng)時(shí),求直線的普通方程和圓的直角坐標(biāo)方程;

(Ⅱ)直線與圓的交點(diǎn)為、,證明:是與無(wú)關(guān)的定值.

【答案】(1)直線的普通方程為,圓的直角坐標(biāo)方程為;(2)見(jiàn)解析.

【解析】試題分析:(Ⅰ)當(dāng)時(shí),消去得到直線的普通方程,由圓極坐標(biāo)方程,根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,即可得到原的直角坐標(biāo)方程.

(Ⅱ)將直線的參數(shù)方程代入圓的方程,,得,由的幾何意義可求得的值.

試題解析:

(Ⅰ)當(dāng)時(shí),的參數(shù)方程為為參數(shù)),

消去.由圓極坐標(biāo)方程為,得

故直線的普通方程為的直角坐標(biāo)方程為

(Ⅱ)將代入得,

設(shè)其兩根分別為,則

的幾何意義知 .故為定值(與無(wú)關(guān)) .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018海南高三階段性測(cè)試(二模)如圖,在直三棱柱中, , ,點(diǎn)的中點(diǎn),點(diǎn)上一動(dòng)點(diǎn).

I)是否存在一點(diǎn),使得線段平面?若存在,指出點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.

II)若點(diǎn)的中點(diǎn)且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若過(guò)點(diǎn)的直線交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4,坐標(biāo)系與參數(shù)方程

已知在平面直角坐標(biāo)系xOy中,橢圓C的方程為,以O為極點(diǎn),x軸的非負(fù)半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求直線的直角坐標(biāo)方程;

(2)設(shè)Mx,y)為橢圓C上任意一點(diǎn),求|x+y﹣1|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱錐中,平面,,,分別為線段、上的點(diǎn),且.

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)若,求函數(shù)在的切線方程;

(2)若函數(shù)上為單調(diào)遞減函數(shù),求實(shí)數(shù)的最小值;

(3)若存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料,乙材料.用5個(gè)工時(shí);生產(chǎn)一件產(chǎn)品B需要甲材料,乙材料 ,用3個(gè)工時(shí)。生產(chǎn)一件產(chǎn)品A的利潤(rùn)為2100元,生產(chǎn)一件產(chǎn)品B的利潤(rùn)為900元,該企業(yè)現(xiàn)有甲材料150,乙材料,則在不超過(guò)600個(gè)工時(shí)的條件下,生產(chǎn)產(chǎn)品A,產(chǎn)品B的利潤(rùn)之和的最大值為______________元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)軸為極軸的極坐標(biāo)系中,曲線(為極角).

(1)將曲線化為極坐標(biāo)方程,當(dāng)時(shí),將化為直角坐標(biāo)方程;

(2)若曲線相交于一點(diǎn),求點(diǎn)的直角坐標(biāo)使到定點(diǎn)的距離最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《漢字聽(tīng)寫(xiě)大會(huì)》不斷創(chuàng)收視新高,為了避免“書(shū)寫(xiě)危機(jī)”弘揚(yáng)傳統(tǒng)文化,某市大約10萬(wàn)名市民進(jìn)行了漢字聽(tīng)寫(xiě)測(cè)試.現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民的聽(tīng)寫(xiě)測(cè)試情況,發(fā)現(xiàn)被測(cè)試市民正確書(shū)寫(xiě)漢字的個(gè)數(shù)全部在之間,將測(cè)試結(jié)果按如下方式分成六組:第一組,第二組,…,第六組,如圖是按上述分組方法得到的頻率分布直方圖.

(1)若電視臺(tái)記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第1組或第4組的概率;

(2)已知第5,6兩組市民中有3名女性,組織方要從第5,6兩組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性市民的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案