7.求符合下列條件的圓的方程:
(1)已知點(diǎn)M(3,4),N(1,2),以MN為直徑.

分析 求出圓的圓心與半徑,然后求解圓的方程.

解答 解:點(diǎn)M(3,4),N(1,2),以MN為直徑.
可得圓心坐標(biāo)(2,3),半徑為:$\frac{1}{2}\sqrt{({3-1)}^{2}+(4-2)^{2}}$=$\sqrt{2}$.
所求的圓的方程為:(x-2)2+(y-3)2=2.

點(diǎn)評(píng) 本題考查圓的方程的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知?x0∈R使得關(guān)于x的不等式|x-1|-|x-2|≥t成立.
(Ⅰ)求滿足條件的實(shí)數(shù)t集合T;
(Ⅱ)若m>1,n>1,且對(duì)于?t∈T,不等式log3m•log3n≥t恒成立,試求m+n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△ABC的內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若b2=ac,c=2a,則cosC=(  )
A.$\frac{{\sqrt{2}}}{4}$B.$-\frac{{\sqrt{2}}}{4}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)向量$\overrightarrow{a}$=(-1,-2),$\overrightarrow$=(m,m+1),$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow$|等于( 。
A.$\frac{2}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{5}{9}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.全集U={(x,y)|x∈R,y∈R},集合S⊆U,若S中的點(diǎn)在直角坐標(biāo)平面內(nèi)形成的圖形關(guān)于原點(diǎn)、坐標(biāo)軸、直線y=x均對(duì)稱,且(2,3)∈S,則S中元素個(gè)數(shù)至少有( 。
A.4個(gè)B.6個(gè)C.8個(gè)D.10個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求以圓x2+y2-4x-8=0的圓心為右焦點(diǎn),長(zhǎng)軸長(zhǎng)為8的橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在平行四邊形ABCD中,F(xiàn)是CD的中點(diǎn),AF與BD交于E,求證:E為線段BD的三等分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知數(shù)列{an}的首項(xiàng)為15,滿足$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{a}_{n}+2n}{{a}_{n+1}-2n}$,an+an+1≠0,且$\frac{{a}_{n}}{n}$>λ2-3λ恒成立,則實(shí)數(shù)λ的取值范圍為( 。
A.-2<λ<3B.λ≤-2或λ≥3C.-$\frac{3}{2}$<λ<$\frac{9}{2}$D.λ≤-$\frac{3}{2}$或λ≥$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知a為實(shí)數(shù),函數(shù)f(x)=alnx+x2-4x.
(1)設(shè)g(x)=(a-2)x,若$?x∈[{\frac{1}{e},e}]$,使得f(x)≥g(x)成立,求實(shí)數(shù)a的取值范圍.
(2)定義:若函數(shù)m(x)的圖象上存在兩點(diǎn)A、B,設(shè)線段AB的中點(diǎn)為P(x0,y0),若m(x)在點(diǎn)Q(x0,m(x0))處的切線l與直線AB平行或重合,則函數(shù)m(x)是“中值平衡函數(shù)”,切線l叫做函數(shù)m(x)的“中值平衡切線”.試判斷函數(shù)f(x)是否是“中值平衡函數(shù)”?若是,判斷函數(shù)f(x)的“中值平衡切線”的條數(shù);若不是,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案