A. | -$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$ | B. | $\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$ | C. | -$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$ | D. | $\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$ |
分析 根據(jù)題意,利用空間向量的線性表示與運(yùn)算,用$\overrightarrow{DA}$、$\overrightarrow{DB}$與$\overrightarrow{DC}$表示出$\overrightarrow{MN}$即可.
解答 解:連接DN,如圖所示,
四面體ABCD中,$\overrightarrow{DA}$=$\overrightarrow{a}$,$\overrightarrow{DB}$=$\overrightarrow$,$\overrightarrow{DC}$=$\overrightarrow{c}$,
點(diǎn)M在棱DA上,且$\overrightarrow{DM}$=3$\overrightarrow{MA}$,∴$\overrightarrow{DM}$=$\frac{3}{4}$$\overrightarrow{DA}$,
又N為BC中點(diǎn),∴$\overrightarrow{DN}$=$\frac{1}{2}$($\overrightarrow{DB}$+$\overrightarrow{DC}$);
∴$\overrightarrow{MN}$=$\overrightarrow{MD}$+$\overrightarrow{DN}$
=-$\frac{3}{4}$$\overrightarrow{DA}$+$\frac{1}{2}$($\overrightarrow{DB}$+$\overrightarrow{BC}$)
=-$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$.
故選:C.
點(diǎn)評(píng) 本題考查了空間向量的線性表示與運(yùn)算問題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | -3或1 | C. | 3或-1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$x±y=0 | B. | x±2$\sqrt{2}$y=0 | C. | x±2y=0 | D. | 2x±y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,ex>0 | B. | $?{x_0}∈{N^*},sin\frac{π}{2}{x_0}=1$ | ||
C. | ?x0∈R,lnx0<0 | D. | ?x∈N,x2>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com