設(shè)函數(shù)定義在上,,導(dǎo)函數(shù)
(1)求的單調(diào)區(qū)間和最小值;
(2)討論的大小關(guān)系;
(3)是否存在,使得對任意成立?若存在,求出的取值范圍;若不存在,請說明理由.

(1)區(qū)間在是函數(shù)的減區(qū)間;區(qū)間在是函數(shù)的增區(qū)間;最小值是
(2)當(dāng)時,=0,∴;
當(dāng)時,=0,∴
(3)不存在,見解析

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)若,求曲線在點處的切線方程;
(2)若 求函數(shù)的單調(diào)區(qū)間;
(3)若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2014·成都模擬)已知函數(shù)f(x)=x2++alnx(x>0).
(1)若f(x)在[1,+∞)上單調(diào)遞增,求a的取值范圍.
(2)若定義在區(qū)間D上的函數(shù)y=f(x)對于區(qū)間D上的任意兩個值x1,x2總有不等式[f(x1)+f(x2)]≥f成立,則稱函數(shù)y=f(x)為區(qū)間D上的“凹函數(shù)”.試證當(dāng)a≤0時,f(x)為“凹函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)在區(qū)間上為單調(diào)增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點.已知a,b是實數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個極值點.
(1)求a和b的值;
(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=f(x)+2,求g(x)的極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) 
(1)當(dāng)在點處的切線方程是y=x+ln2時,求a的值.
(2)當(dāng)的單調(diào)遞增區(qū)間是(1,5)時,求a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d).若曲線y=f(x)和曲線y=g(x)都過點P(0,2),且在點P處有相同的切線y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2時,f(x)≤kg(x),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處的切線的斜率為.
(1)求實數(shù)的值及函數(shù)的最大值;
(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖象在點處的切線方程為
.
(1)求實數(shù)的值;
(2)設(shè).
①若上的增函數(shù),求實數(shù)的最大值;
②是否存在點,使得過點的直線若能與曲線圍成兩個封閉圖形,則這兩個封閉圖形的面積總相等.若存在,求出點坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案