已知函數(shù)在處的切線的斜率為.
(1)求實數(shù)的值及函數(shù)的最大值;
(2)證明:.
(1),不存在;(2)參考解析
解析試題分析:(1)由函數(shù)在處的切線的斜率為,通過求導(dǎo)以及將x=1代入導(dǎo)函數(shù)即可得到的值.根據(jù)的對函數(shù)求導(dǎo),由定義域的范圍即可得到導(dǎo)函數(shù)的正負,從而可得函數(shù)的單調(diào)性.
(2)需證明,由題意可得令=1.即可構(gòu)造.只需令.即可得到.所以只需證明在單調(diào)遞減即可.由題意可得結(jié)論成立.
(1)由已知可得函數(shù)的定義域為
(2分)
在是單調(diào)遞增
的最大值不存在 (6分)
(2)由(1)令,則
,
,當且僅當時等號成立
令
則
考點:1.函數(shù)的導(dǎo)數(shù).2.函數(shù)的最值問題.3.構(gòu)建新的函數(shù)的創(chuàng)新思維.
科目:高中數(shù)學 來源: 題型:解答題
如圖,把邊長為10的正六邊形紙板剪去相同的六個角,做成一個底面為正六邊形的無蓋六棱柱盒子,設(shè)其高為h,體積為V(不計接縫).
(1)求出體積V與高h的函數(shù)關(guān)系式并指出其定義域;
(2)問當為多少時,體積V最大?最大值是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)定義在上,,導(dǎo)函數(shù),.
(1)求的單調(diào)區(qū)間和最小值;
(2)討論與的大小關(guān)系;
(3)是否存在,使得對任意成立?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)討論函數(shù)在上的單調(diào)性;
(2)當時,曲線上總存在相異兩點,,,使得曲線在、處的切線互相平行,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其中且.
(1)求證:函數(shù)在點處的切線與總有兩個不同的公共點;
(2)若函數(shù)在區(qū)間上有且僅有一個極值點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(,).
(Ⅰ)當時,求曲線在點處切線的方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)當時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)().
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)函數(shù)在定義域內(nèi)是否存在零點?若存在,請指出有幾個零點;若不存在,請說明理由;
(3)若對任意恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),,其中m∈R.
(1)若0<m≤2,試判斷函數(shù)f (x)=f1 (x)+f2 (x)的單調(diào)性,并證明你的結(jié)論;
(2)設(shè)函數(shù) 若對任意大于等于2的實數(shù)x1,總存在唯一的小于2的實數(shù)x2,使得g (x1) =" g" (x2) 成立,試確定實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com