17.在等比數(shù)列{an}中,3a5-a3a7=0,若數(shù)列{bn}為等差數(shù)列,且b5=a5,則{bn}的前9項的和S9為( 。
A.24B.25C.27D.28

分析 根據(jù){an}是等比數(shù)列,3a5-a3a7=0,可得3a5-a52=0,解得a5=3.即b5=3,${S}_{9}=\frac{_{1}+_{9}}{2}×9$,利用b1+b9=2b5即可求解.

解答 解:由題意{an}是等比數(shù)列,3a5-a3a7=0,
∴3a5-a52=0,
解得a5=3.
∵b5=a5,即b5=3.
b1+b9=2b5
那么${S}_{9}=\frac{_{1}+_{9}}{2}×9$=27.
故選C

點評 本題主要考查等差等比數(shù)列的應(yīng)用,根據(jù){an}是等比數(shù)列,3a5-a3a7=0,求出a5是解決本題的關(guān)鍵;基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在△ABC中,∠B=90°,∠BAD=∠DAE=∠EAC,BD=2,DE=3.
(Ⅰ)求AB的長;
(Ⅱ)求sinC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)Q表示要證明的結(jié)論,P表示一個明顯成立的條件,那么下列流程圖表示的證明方法是(  )
Q?P1→P1?P2→P2?P3→…→得到一個明顯成立的條件.
A.綜合法B.分析法C.反證法D.比較法

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)y=$\sqrt{3}cosx+sinx({x∈R})$的圖象向左平移m(m>0)個單位長度后,所得到的圖象關(guān)于y軸對稱,則m的最小值是( 。
A.$\frac{π}{6}$B.$\frac{π}{12}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.點M,N分別是正方體ABCD-A1B1C1D1的棱BB1和B1C1的中點,則MN和CD1所成角的大小為( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.$\frac{1-tan17°tan28°}{tan17°+tan28°}$等于( 。
A.-1B.1C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=sin(2x+\frac{π}{6})+sin(2x-\frac{π}{6})+cos2x+1$
(1)求函數(shù)f(x)的最小正周期和函數(shù)的單調(diào)遞增區(qū)間;
(2)已知△ABC中,角A,B,C的對邊分別為a,b,c,若$f(A)=3,B=\frac{π}{4},a=\sqrt{3}$,求AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4
(1)若($\overrightarrow{a}-\overrightarrow$)•$\overrightarrow$=-20,求向量$\overrightarrow{a}$與$\overrightarrow$的夾角及|3$\overrightarrow{a}$+$\overrightarrow$|
(2)在矩形ABCD中,CD的中點為E,BC的中點為F,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,試用向量$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{AE}$,$\overrightarrow{AF}$,并求$\overrightarrow{AE}•\overrightarrow{AF}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.一圓錐的側(cè)面展開圖恰好是一個半徑為4的半圓,則圓錐的高等于2$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案