設(shè)F為拋物線E: 的焦點(diǎn),A、B、C為該拋物線上三點(diǎn),已知 且.
(1)求拋物線方程;
(2)設(shè)動(dòng)直線l與拋物線E相切于點(diǎn)P,與直線相交于點(diǎn)Q。證明以PQ為直徑的圓恒過y軸上某定點(diǎn)。
(1)(2)本題主要由·=0來求出M點(diǎn)。
解析試題分析:解;(1)由知又
所以所以所求拋物線方程為
(2)設(shè)點(diǎn)P(,), ≠0.∵Y=,,
切線方程:y-=,即y=
由 ∴Q(,-1)
設(shè)M(0,)∴,∵·=0
--++=0,又,∴聯(lián)立解得=1
故以PQ為直徑的圓過y軸上的定點(diǎn)M(0,1)
考點(diǎn):拋物線的方程
點(diǎn)評(píng):關(guān)于曲線的大題,第一問一般是求出曲線的方程,第二問常與直線結(jié)合起來,當(dāng)涉及到交點(diǎn)時(shí),常用到根與系數(shù)的關(guān)系式:()。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線與雙曲線有公共焦點(diǎn),點(diǎn)是曲線在第一象限的交點(diǎn),且.
(1)求雙曲線的方程;
(2)以雙曲線的另一焦點(diǎn)為圓心的圓與直線相切,圓:.過點(diǎn)作互相垂直且分別與圓、圓相交的直線和,設(shè)被圓截得的弦長(zhǎng)為,被圓截得的弦長(zhǎng)為,問:是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,點(diǎn)是橢圓()的左焦點(diǎn),點(diǎn),分別是橢圓的左頂點(diǎn)和上頂點(diǎn),橢圓的離心率為,點(diǎn)在軸上,且,過點(diǎn)作斜率為的直線與由三點(diǎn),,確定的圓相交于,兩點(diǎn),滿足.
(1)若的面積為,求橢圓的方程;
(2)直線的斜率是否為定值?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義:設(shè)分別為曲線和上的點(diǎn),把兩點(diǎn)距離的最小值稱為曲線到的距離.
(1)求曲線到直線的距離;
(2)已知曲線到直線的距離為,求實(shí)數(shù)的值;
(3)求圓到曲線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,短軸長(zhǎng)為,離心率為.
(I)求橢圓的方程;
(II) 為橢圓上滿足的面積為的任意兩點(diǎn),為線段的中點(diǎn),射線交橢圓與點(diǎn),設(shè),求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,分別是橢圓的左、右焦點(diǎn),關(guān)于直線的對(duì)稱點(diǎn)是圓的一條直徑的兩個(gè)端點(diǎn)。
(Ⅰ)求圓的方程;
(Ⅱ)設(shè)過點(diǎn)的直線被橢圓和圓所截得的弦長(zhǎng)分別為,。當(dāng)最大時(shí),求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)分別是橢圓:的左、右焦點(diǎn),過傾斜角為的直線 與該橢圓相交于P,兩點(diǎn),且.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè)點(diǎn) 滿足,求該橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:的右焦點(diǎn)在圓上,直線交橢圓于、兩點(diǎn).
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若OM⊥ON(為坐標(biāo)原點(diǎn)),求的值;
(Ⅲ) 設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為(與不重合),且直線與軸交于點(diǎn),試問的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的焦點(diǎn)為,點(diǎn)是拋物線上的一點(diǎn),且其縱坐標(biāo)為4,.
(1)求拋物線的方程;
(2)設(shè)點(diǎn)是拋物線上的兩點(diǎn),的角平分線與軸垂直,求直線AB的斜率;
(3)在(2)的條件下,若直線過點(diǎn),求弦的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com