5.設(shè)函數(shù)f(cos2x)=4sin2x-3,則f(-$\frac{1}{3}$)=-$\frac{1}{3}$.

分析 已知解析式利用二倍角的余弦函數(shù)公式化簡(jiǎn),整理得到f(x)解析式,把x=-$\frac{1}{3}$代入計(jì)算即可求出f(-$\frac{1}{3}$)的值.

解答 解:f(cos2x)=4×$\frac{1-cos2x}{2}$-3=2-2cos2x-3=-2cos2x-1,
∴f(x)=-2x-1,
把x=-$\frac{1}{3}$代入得:f(-$\frac{1}{3}$)=$\frac{2}{3}$-1=-$\frac{1}{3}$,
故答案為:-$\frac{1}{3}$

點(diǎn)評(píng) 此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.扣人心弦巴西世界足球杯已落下了帷幕,為了解市民對(duì)該屆世界杯的關(guān)注情況,某市足球協(xié)會(huì)針對(duì)該市市民組織了一次隨機(jī)調(diào)查,所抽取的樣本容量為120,調(diào)查結(jié)果如下:
收視情況看直播看轉(zhuǎn)播不看
人數(shù)(單位:人)604020
(1)若從這120人中按照分層抽樣的方法隨機(jī)抽取6人進(jìn)行座談,再?gòu)倪@6人中隨機(jī)抽取3人頒發(fā)幸運(yùn)禮品,求這3人中至少有1人為“看直播“的概率
(2)現(xiàn)從(1)所抽取的6人的問(wèn)卷中每次抽取1份,且不重復(fù)抽取,直到確定出所有為看直播的問(wèn)卷為止,記要抽取的次數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}的首項(xiàng)為a1=5,前n項(xiàng)和為Sn,且Sn+1=2Sn+n+5,求{an}通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求圓的極坐標(biāo)方程:
(1)圓心在A(1,$\frac{π}{4}$),半徑為1的圓;
(2)圓心在(a,$\frac{π}{2}$),半徑為a的圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知三個(gè)不等式:
①|(zhì)2x-4|<5-x;
②$\frac{x+2}{{x}^{2}-3x+2}$≥1;
③2x2+mx-1<0.
(1)若同時(shí)滿足①②的x值也滿足③,求m的取值范圍;
(2)若滿足③的x值至少滿足①和②中的一個(gè),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.現(xiàn)有編號(hào)1,2,3,4,5五個(gè)小球和編號(hào)1,2,3,4,5的五個(gè)盒子,現(xiàn)將這五個(gè)球放入這五個(gè)盒子中,并且恰有兩個(gè)球編號(hào)與盒子編號(hào)相同,則不同的投放方式有( 。┓N.
A.20B.21C.22D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1=$\left\{\begin{array}{l}{2{a}_{n}+2n-2,n為奇數(shù)}\\{-{a}_{n}-n,n為偶數(shù)}\end{array}\right.$,數(shù)列{an}的前n項(xiàng)和為Sn,bn=a2n,其中n∈N*
(Ⅰ) 求a2+a3的值;
(Ⅱ) 證明:數(shù)列{bn}為等比數(shù)列;
(Ⅲ) 是否存在n(n∈N*),使得數(shù)列{an}前2n+1項(xiàng)的和S2n+1≥-$\frac{23}{2}$恒成立,若存在,求出所有的n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=sinωxcosωx+$\sqrt{3}$cos2ωx+$\frac{3}{2}$(ω>0),其兩條相鄰對(duì)稱軸之間的距離等于$\frac{π}{2}$.
(Ⅰ)求f(x)的解析式
(Ⅱ)若對(duì)?x∈[-$\frac{π}{12}$,0],都有|f(x)-m|≤1,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知實(shí)數(shù)x1,x2,…,x10滿足$\sum_{i=1}^{10}$|xi-1|≤4,$\sum_{i=1}^{10}$|xi-2|≤6,求x1,x2,…,x10的平均值.

查看答案和解析>>

同步練習(xí)冊(cè)答案