周老師上數(shù)學(xué)課時,給班里同學(xué)出了兩道選擇題,她預(yù)估計做對第一道題的概率為0.80,做對兩道題的概率為0.60,則預(yù)估計做對第二道題的概率為( 。
A、0.80B、0.75
C、0.60D、0.48
考點:相互獨立事件的概率乘法公式
專題:概率與統(tǒng)計
分析:設(shè)事件Ai(i=1,2)表示“做對第i道題”,A1,A2相互獨立,由已知條件結(jié)合相互獨立事件的概率乘法公式得P(A1A2)=P(A1)P(A2)=0.8P(A2)=0.6,由此能求出做對第二道題的概率.
解答: 解:設(shè)事件Ai(i=1,2)表示“做對第i道題”,A1,A2相互獨立,
由已知得P(A1)=0.8,P(A1A2)=0.6,
∴P(A1A2)=P(A1)P(A2)=0.8P(A2)=0.6,
解得P(A2)=
0.6
0.8
=0.75.
故選:B.
點評:本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意相互獨立事件概率乘法公式的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

運行如圖所示的程序框圖,如果輸出的t∈(-2,2],則輸入x的范圍是( 。
A、[-4,
2
]
B、(-4,
2
]
C、[-
2
,4]
D、(-
2
,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l經(jīng)過點P(1,2),且被直線l1:3x+4y+8=0,l2:3x+4y-7=0截得的線段長為3
2
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)與g(x),如果其圖象可以通過平移重合,則稱f(x)與g(x)互為“移合函數(shù)”.已知函數(shù)f(x)=sinx,下列函數(shù)中,與f(x)互為“移合函數(shù)”的序號為( 。
①g(x)=sinxcos
π
4
+cosxsin
π
4

②g(x)=cos2
x
2
+
3
sin
x
2
cos
x
2
+1;
③g(x)=cos2x-sin2x;
④g(x)=2
2
cos(x+
π
4
A、①②B、①③C、②④D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若cos(α-β)=-
4
5
,cos(α+β)=
4
5
,
π
2
<α-β<π,
2
<α+β<2π,則cos2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=a1-x(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny-1=0(mn>0)上,則
1
m
+
1
n
的最小值為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p和q是兩個命題,若¬p是¬q的必要不充分條件,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若p:事件A1、A2是互斥事件;q:事件A1、A2是對立事件,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-mx+2=0}.若A∪B=A,A∩C=C,求實數(shù)a,m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案