已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-mx+2=0}.若A∪B=A,A∩C=C,求實(shí)數(shù)a,m的取值范圍.
考點(diǎn):交集及其運(yùn)算,并集及其運(yùn)算
專(zhuān)題:集合
分析:求出A中方程的解確定出A,由A∪B=A,A∩C=C,得到B⊆A,C⊆A,分類(lèi)討論B與C,分別求出a,m的范圍即可.
解答: 解:由A中方程變形得:(x-1)(x-2)=0,
解得:x=1或x=2,即A={1,2},
∵B={x|x2-ax+a-1=0},C={x|x2-mx+2=0},且A∪B=A,A∩C=C,
∴B⊆A,C⊆A,
若B⊆A,顯見(jiàn)B中至少有一個(gè)元素1,即B≠∅,
當(dāng)B為單元素集合時(shí),只需a=2,此時(shí)B={1}滿足題意;
當(dāng)B為雙元素集合時(shí),只需a=3,此時(shí)B={1,2}也滿足題意,
∴a=2或a=3,
則a的取值集合為{2,3};
若C⊆A,
當(dāng)C是空集時(shí),△=m2-8<0,即-2
2
<m<2
2
;
當(dāng)C為單元素集合時(shí),△=0,m=±2
2

此時(shí)C={
2
}或C={-
2
},不滿足題意;
當(dāng)C為雙元素集合時(shí),C只能為{1,2},此時(shí)m=3,
綜上,m的取值集合為{m|m=3或-2
2
<m<2
2
}.
點(diǎn)評(píng):此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

周老師上數(shù)學(xué)課時(shí),給班里同學(xué)出了兩道選擇題,她預(yù)估計(jì)做對(duì)第一道題的概率為0.80,做對(duì)兩道題的概率為0.60,則預(yù)估計(jì)做對(duì)第二道題的概率為( 。
A、0.80B、0.75
C、0.60D、0.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a=2 
1
3
,b=0.3 
1
2
,c=log2
1
3
,則a,b,c大小關(guān)系為(  )
A、a>b>c
B、a>c>b
C、c>b>a
D、b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1=2+i,z2=1-2i,若z=
z1
z2
,則
.
z
=( 。
A、
4
5
+i
B、
4
5
-i
C、i
D、-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P0是△ABC的AB邊上一定點(diǎn),且
AP0
=3
P0B
,P是△ABC的AB邊所在直線上任意一動(dòng)點(diǎn),若
P0B
P0C
PB
PC
恒成立,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c的導(dǎo)函數(shù)為f′(x),對(duì)?x∈R,不等式f(x)≥f′(x)恒成立,則
b2
a2+2c2
的最大值為( 。
A、
6
+2
B、
6
-2
C、2
2
+2
D、2
2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓G的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,離心率為
3
2
,且橢圓G上一點(diǎn)到其兩個(gè)焦點(diǎn)的距離之和為12,則橢圓G的方程為( 。
A、
x2
36
+
y2
9
=1
B、
x2
9
+
y2
36
=1
C、
x2
4
+
y2
9
=1
D、
x2
9
+
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A,B,C的坐標(biāo)依次是(-1,0,1)(2,4,3)(5,8,5),求證:三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

分別寫(xiě)出命題“若ac<0,則方程ax2+bx+c=0(a,b,c∈R)有實(shí)根”的逆命題、否命題、逆否命題,并判斷它們的真假.

查看答案和解析>>

同步練習(xí)冊(cè)答案