分析 本題只有一個(gè)變量,只要利用區(qū)間長(zhǎng)度的比求概率即可.
解答 解:由題意在(0,π)上任取一個(gè)數(shù),對(duì)應(yīng)區(qū)間長(zhǎng)度為π,
而在此條件下使得$\sqrt{3}$<tanx的范圍是($\frac{π}{3}$,$\frac{π}{2}$),區(qū)間長(zhǎng)度為$\frac{π}{6}$,
由幾何概型的概率公式得到使得$\sqrt{3}$<tanx的概率為$\frac{\frac{π}{6}}{π}$=$\frac{1}{6}$;
故答案為:$\frac{1}{6}$.
點(diǎn)評(píng) 本題考查了幾何概型概率的求法;關(guān)鍵是正確選擇測(cè)度比求概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 28 | C. | 24 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(1,1+\frac{{\sqrt{2}}}{2})$ | B. | $(1-\frac{{\sqrt{2}}}{2},1)$ | C. | $(1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{2}}}{2})$ | D. | $(1-\frac{{\sqrt{2}}}{2},1+\frac{{\sqrt{2}}}{2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,0) | B. | (-2,0) | C. | (-1,0) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | -4 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com