在復平面內(nèi),復數(shù)z=-i2+i3的共軛復數(shù)對應的點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點:復數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復數(shù)
分析:利用復數(shù)的運算法則、共軛復數(shù)、幾何意義即可得出.
解答: 解:在復平面內(nèi),復數(shù)z=-i2+i3=1-i的共軛復數(shù)
.
z
=1+i對應的點(1,1)位于第一象限,
故選:A.
點評:本題考查了復數(shù)的運算法則、共軛復數(shù)、幾何意義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
2x-a
2x+1
(a∈R)是奇函數(shù).
(1)求a的值;
(2)證明:y=f(x)在[0,+∞)上是增加的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當x>0時,函數(shù)y=
x2+2x+4
x
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a=
1
2
cos6°-
3
2
sin6°,b=
2tan130
1+tan2130
,則a,b的大小關系為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=2,an+1=an+2n-3,則a100=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“存在x0∈R,2X0≤0”的否定是( 。
A、對任意的x0∈R,2X0>0
B、存在x0∈R,2X0>0
C、對任意的x0∈R,2X0≤0
D、不存在x0∈R,2X0>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果集合A={x|ax2+2x+1=0}只有2個子集,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是R上的奇函數(shù),且x∈(-∞,0)時,f(x)=x(1-x3),求當x∈(0,+∞)時f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l xsinα+ycosα=1與圓x2+y2=1的關系為
 

查看答案和解析>>

同步練習冊答案