分析 (1)由橢圓的長軸長是短軸長的兩倍,焦距為2$\sqrt{3}$,列出方程組,能求出橢圓方程.
(2)由已得A(2,1),B(-2,1),設P(x0,y0),由此能證明點Q(m,n)在定圓x2+y2=$\frac{1}{2}$運動.
解答 (1)解:∵橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的長軸長是短軸長的兩倍,焦距為2$\sqrt{3}$,
∴$\left\{\begin{array}{l}{a=2b}\\{2c=2\sqrt{3}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a=2,b=1,c=$\sqrt{3}$,
∴橢圓方程為$\frac{{x}^{2}}{4}+{y}^{2}=1$.
(2)證明:∵A、B是四條直線x=±2,y=±1所圍成的兩個頂點,
∴A(2,1),B(-2,1),設P(x0,y0),
則$\frac{{{x}_{0}}^{2}}{4}$+y02=1.由$\overrightarrow{OP}=m\overrightarrow{OA}+n\overrightarrow{OB}$,得$\left\{\begin{array}{l}{{x}_{0}=2(m-n)}\\{{y}_{0}=m+n}\end{array}\right.$,
∴$\frac{4(m-n)^{2}}{4}$+(m+n)2=1,故點Q(m,n)在定圓x2+y2=$\frac{1}{2}$運動.
點評 本題考查橢圓的方程的求法,考查動點在定圓上運動的證明,解題時要認真審題,注意橢圓性質的應用,考查轉化思想計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{8}$ | B. | $\frac{\sqrt{10}}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com