【題目】對(duì)于在某個(gè)區(qū)間上有意義的函數(shù),如果存在一次函數(shù)使得對(duì)于任意的,有恒成立,則稱(chēng)函數(shù)是函數(shù)的一個(gè)弱漸近函數(shù).

1)若函數(shù)是函數(shù)在區(qū)間上的一個(gè)弱漸近函數(shù),求實(shí)數(shù)的取值范圍;

2)證明:函數(shù)是函數(shù)在區(qū)間上的弱漸近函數(shù);

3)試問(wèn):函數(shù)與函數(shù)(其中為自然對(duì)數(shù)的底數(shù))在區(qū)間上是否存在相同的弱漸近函數(shù)?如果存在,請(qǐng)求出對(duì)應(yīng)的弱漸近函數(shù)應(yīng)滿足的條件;如不存在,請(qǐng)說(shuō)明理由.

【答案】1;(2)見(jiàn)解析;(3)存在,,其中.

【解析】

1)由弱漸近函數(shù)的定義得出,由此可求出實(shí)數(shù)的取值范圍;

2)當(dāng)時(shí),利用分子有理化結(jié)合放縮法證明出,結(jié)合弱漸近函數(shù)的定義可證明結(jié)論成立;

3)假設(shè)存在滿足題意的弱漸近函數(shù),根據(jù)弱漸近函數(shù)的定義得出,可求得以及實(shí)數(shù)所滿足的不等式組,解出即可得出滿足題意的若漸近函數(shù)的解析式.

1)依題意,當(dāng)時(shí),恒成立,

恒成立,故,所以,實(shí)數(shù)的取值范圍是

2)當(dāng)時(shí),

,.

,得證;

3)假設(shè)存在滿足題意的弱漸近函數(shù)

,

,由于當(dāng)時(shí),,故,

但是,當(dāng)時(shí),,故

不符合“恒成立”的要求,所以,

此時(shí),則

解得:;

,

當(dāng)時(shí),,故

,解得:.

綜上所述,函數(shù)與函數(shù)在區(qū)間上存在相同的弱漸近函數(shù),對(duì)應(yīng)的弱漸近函數(shù)是,其中.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為正常數(shù)),且函數(shù)的圖像在軸上的截距相等;

1)求的值;

2)若為常數(shù)),試討論函數(shù)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,且),若存在非空集合,使得,且,并任意,都有,則稱(chēng)集合S具有性質(zhì)P,稱(chēng)為集合SP子集.

1)當(dāng)時(shí),試說(shuō)明集合S具有性質(zhì)P,并寫(xiě)出相應(yīng)的P子集;

2)若集合S具有性質(zhì)P,集合T是集合S的一個(gè)P子集,設(shè),求證:任意,,都有;

3)求證:對(duì)任意正整數(shù),集合S具有性質(zhì)P.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下圖是四面體及其三視圖,的中點(diǎn),的中點(diǎn).

1)求四面體的體積;

2)求與平面所成的角;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓上,焦點(diǎn)為,圓O的直徑為

1)求橢圓C及圓O的標(biāo)準(zhǔn)方程;

2)設(shè)直線l與圓O相切于第一象限內(nèi)的點(diǎn)P,且直線l與橢圓C交于兩點(diǎn).記 的面積為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)討論函數(shù)的單調(diào)性;

(Ⅲ)對(duì)于任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)已進(jìn)入新時(shí)代中國(guó)特色社會(huì)主義時(shí)期,人民生活水平不斷提高.某市隨機(jī)統(tǒng)計(jì)了城區(qū)若干戶市民十月人均生活支出比九月人均生活支出增加量(記為P元)的情況,并根據(jù)統(tǒng)計(jì)數(shù)據(jù)制成如圖頻率分布直方圖.

1)根據(jù)頻率分布直方圖估算P的平均值;

2)若該市城區(qū)有4戶市民十月人均生活支出比九月人均生活支出分別增加了42元,50元,52元,60元,從這4戶中隨機(jī)抽取2戶,求這2P值的和超過(guò)100元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐,底面為菱形, 平面,,EF分別是,的中點(diǎn).

1)求證:;

2)若直線與平面所成角的余弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,在直角梯形DCEF中,,,,將四邊形ABEF沿AB邊折成圖2.

1)求證:平面DEF;

2)若,求平面DEF與平面EAC所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案