分析 利用函數(shù)關(guān)系結(jié)合函數(shù)的單調(diào)性將不等式進(jìn)行轉(zhuǎn)化進(jìn)行求解即可.
解答 解:∵f(2)=1,
∴f(4)=f(2)+f(2)=1+1=2,
則不等式f(x)+f(x-3)≤2等價(jià)為f(x(x-3))≤f(4),
∵在(0,+∞)上是增函數(shù),
∴$\left\{\begin{array}{l}{x>0}\\{x-3>0}\\{x(x-3)≤4}\end{array}\right.$,即$\left\{\begin{array}{l}{x>0}\\{x>3}\\{{x}^{2}-3x-4≤0}\end{array}\right.$,即$\left\{\begin{array}{l}{x>0}\\{x>3}\\{-1≤x≤4}\end{array}\right.$,
解得3<x≤4,
即不等式的解集為(3,4].
點(diǎn)評 本題主要考查抽象函數(shù)的應(yīng)用,根據(jù)函數(shù)單調(diào)性的性質(zhì)是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $?{x_0}∈R,{x_0}^2+1≥0$ | B. | $?{x_0}∈R,{x_0}^2+1<0$ | ||
C. | $?{x_0}∈R,{x_0}^2+1≤0$ | D. | ?x∈R,x2+1<0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com