【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(Ⅰ)證明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.

【答案】解:(Ⅰ)取AB的中點O,連接OC,OA1 , A1B,
因為CA=CB,所以OC⊥AB,由于AB=AA1 , ∠BAA1=60°,
所以△AA1B為等邊三角形,所以OA1⊥AB,
又因為OC∩OA1=O,所以AB⊥平面OA1C,
又A1C平面OA1C,故AB⊥A1C;
(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交線為AB,
所以OC⊥平面AA1B1B,故OA,OA1 , OC兩兩垂直.
以O為坐標原點,的方向為x軸的正向,||為單位長,建立如圖所示的坐標系,
可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),
=(1,0,),==(﹣1,,0),=(0,﹣,),
=(x,y,z)為平面BB1C1C的法向量,則,即,
可取y=1,可得=(,1,﹣1),故cos<>==-,
又因為直線與法向量的余弦值的絕對值等于直線與平面的正弦值,
故直線A1C與平面BB1C1C所成角的正弦值為:

【解析】(Ⅰ)取AB的中點O,連接OC,OAspan>1 , A1B,由已知可證OA1⊥AB,AB⊥平面OA1C,進而可得AB⊥A1C;
(Ⅱ)易證OA,OA1 , OC兩兩垂直.以O為坐標原點,的方向為x軸的正向,||為單位長,建立坐標系,可得 , 的坐標,設=(x,y,z)為平面BB1C1C的法向量,則 , 可解得=( , 1,﹣1),可求|cos< , >|,即為所求正弦值.
【考點精析】關于本題考查的直線與平面垂直的性質,需要了解垂直于同一個平面的兩條直線平行才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】【2017廣西5月考前聯(lián)考】寶寶的健康成長是媽媽們最關心的問題,父母親為嬰兒選擇什么品牌的奶粉一直以來都是育嬰中的一個重要話題,為了解過程奶粉的知名度和消費者的信任度,某調查小組特別調查記錄了某大型連鎖超市2015年與2016年這兩年銷售量前5名的五個品牌奶粉的銷量單位:罐,繪制如下的管狀圖:

1根據(jù)給出的這兩年銷量的管狀圖,對該超市這兩年品牌奶粉銷量的前五強進行排名;

2分別計算這5個品牌奶粉2016年所占總銷量僅指這5個品牌奶粉的總銷量的百分比百分數(shù)精確到各位,并將數(shù)據(jù)填入如下餅狀圖中的括號內;

3試以2中的百分比作為概率,若隨機選取2名購買這5個品牌中任意1個品牌的消費者進行采訪,記為被采訪中購買飛鶴奶粉的人數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】梯形BDEF所在平面垂直于平面ABCD于BD,EF∥BD,EF=DE= BD,BD=BC=CD= AB= AD=2,DE⊥BC.

(1)求證:DE⊥平面ABCD;
(2)求平面AEF與平面CEF所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xoy中,圓C的方程為x2+y2﹣8x+15=0,若直線y=kx+2上至少存在一點,使得以該點為圓心,半徑為1的圓與圓C有公共點,則k的最小值是( 。
A.-
B.-
C.-
D.-

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017徐州考前信息卷20】已知函數(shù),,且的最小值為

(1)求的值;

(2)若不等式對任意恒成立,其中是自然對數(shù)的底數(shù),求的取值范圍;

(3)設曲線與曲線交于點,且兩曲線在點處的切線分別為,試判斷,軸是否能圍成等腰三角形?若能,確定所圍成的等腰三角形的個數(shù);若不能,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【南通市、泰州市2017屆高三第一次調研測試】(本題滿分14分)如圖,在平面直角坐標系中,已知橢圓的離心率為,焦點到相應準線的距離為1.

(1)求橢圓的標準方程;

(2)若P為橢圓上的一點,過點O作OP的垂線交直線

于點Q,求的值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,輸出S的值為(

A.14
B.20
C.30
D.55

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017黑龍江雙鴨山市四模如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將的圖象上所有的點

A. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變

B. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的,縱坐標不變

C. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變

D. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的,縱坐標不變

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= sin(ωx+φ)(ω>0,﹣ ≤φ< ),f(0)=﹣ ,且函數(shù)f(x)圖象上的任意兩條對稱軸之間距離的最小值是
(1)求函數(shù)f(x)的解析式;
(2)若f( )= <α< ),求cos(α+ )的值.

查看答案和解析>>

同步練習冊答案