已知(ax+b)2n=a2nx2n+a2n-1x2n-1+…+a2x2+a1x+a0(n∈N*,常數(shù)a>b>0).設(shè)Tn=a0+a2+…+a2n,Rn=a1+a3+…+a2n-1,則下列關(guān)于正整數(shù)n的不等式中,解集是無限集的是( 。
A、Tn<Rn
B、Tn>1.1Rn
C、Rn<0.9Tn
D、Rn>0.99Tn
考點(diǎn):二項(xiàng)式定理
專題:二項(xiàng)式定理
分析:通過給x賦值,求得Tn 和Rn ,由a>b>0,可得Tn>Rn>0,故排除A.求得
lim
n→∞
Tn
Rn
=1,由極限的保號(hào)性可得,B、C均為有限解,D有無窮解,從而得出結(jié)論.
解答: 解:在(ax+b)2n=a2nx2n+a2n-1x2n-1+…+a2x2+a1x+a0(n∈N*,常數(shù)a>b>0)中,
令x=1,可得a0+a1+a2+a3+…+a2n-1 +an=(a+b)2n  ①,
令x=-1,可得得a0-a1+a2-a3+…-a2n-1 +a2n=(-a+b)2n  ②.
由①②求得 Tn=a0+a2+…+a2n =
(a+b)2n+(-a+b)2n
2
,Rn=a1+a3+…+a2n-1=
(a+b)2n-(-a+b)2n
2

由a>b>0,可得Tn>Rn>0,故排除A.
由于
lim
n→∞
Tn
Rn
=
lim
n→∞
(a+b)2n+(a-b)2n
(a+b)2n-(a-b)2n
=
lim
n→∞
1+(
a-b
a+b
)
2n
1-(
a-b
a+b
)
2n
=
1+0
1-0
=1,
由極限的保號(hào)性可得,B、C均為有限解,D有無窮解,
故選:D.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開式的通項(xiàng)公式,求展開式的系數(shù)和常用的方法是賦值法,極限的保號(hào)性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a2+b2≠0,c2+d2≠0,
i
、
j
為相互垂直的單位向量,則向量(a
i
+b
j
)⊥向量(c
i
+d
j
)的充要條件是向量(a
i
+b
j
)∥(  )
A、-c
i
+d
j
B、d
i
+c
j
C、c
i
-d
j
D、-d
i
+c
j

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a使函數(shù)y=log0.5(x2+2x+a)的值域?yàn)镽且函數(shù)y=-(5-2a)x是R上的減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|y=log2x},B={y|y=1-2-x,x>1},則A∩B=( 。
A、(0,
1
2
B、(0,1)
C、(
1
2
,1)
D、Φ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列曲線的凹向區(qū)間與拐點(diǎn).
(1)y=(x-2) 
1
3

(2)y=ln(1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí),f(x)=x(2-x),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由條件a1=1,a2n+1-(2-an)an+1-an(an+2)=0產(chǎn)生16個(gè)項(xiàng)數(shù)都為5的數(shù)列,則這16個(gè)數(shù)列的所有項(xiàng)的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
a
x
-x
(1)若y=log
1
3
[8-f(x)]在[1,+∞]上是單調(diào)遞減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)設(shè)a=1,x+y=k,若不等式f(x)•f(y)≥(
k
2
-
2
k
)2
對(duì)一切(x,y)∈(0,k)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1+a2+a3+…+an=n-an(n∈N*).
(1)求a1,a2,a3的值;
(2)求證:數(shù)列{an-1}是等比數(shù)列;
(3)設(shè)bn=(2-n)(an-1)(n∈N*),如果對(duì)任意n∈N*,都有bn
t
5
,求正整數(shù)t的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案