1.已知直線l過直線3x+4y-5=0和2x+y=0的交點(diǎn)且與直線3x-2y-1=0垂直.
(1)求l的方程;
(2)求直線l的橫截距和縱截距.

分析 (1)由題意可知求得兩直線的交點(diǎn),由垂直于直線3x-2y-1=0的直線方程是:2x+3y+c=0,代入即可求得c的值,求得直線l的方程;
(2)分別令x=0,y=0,求出直線的橫截距和縱截距即可.

解答 解:(1)設(shè)垂直于直線3x-2y-1=0的直線方程是:2x+3y+c=0,
設(shè)直線l過直線3x+4y-5=0和2x+y=0的交點(diǎn)P(x,y);
由$\left\{\begin{array}{l}{3x+4y-5=0}\\{2x+y=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$,
P(-1,2),
代入2x+3y+c=0得:-2+6+c=0,
解得:c=-4,
∴直線l:2x+3y-4=0;
(2)由(1)x=0時,y=$\frac{4}{3}$,縱截距是$\frac{4}{3}$;
y=0時,x=2,橫截距是2.

點(diǎn)評 本題考查求直線的交點(diǎn)坐標(biāo)的方法,考查與直線垂直的直線方程的求法,考查計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知(a+e)x-1-lnx≤0(e是自然對數(shù)的底數(shù))對任意x∈[$\frac{1}{e}$,2]都成立,則實(shí)數(shù)a的最大值為-e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)=$\left\{\begin{array}{l}{\frac{1}{x},1≤x≤2}\\{{e}^{-x},0≤x≤1}\end{array}\right.$,則${∫}_{0}^{2}$f(x)dx=( 。
A.$\frac{1}{e}$+ln2B.-$\frac{1}{e}$+ln2C.1-$\frac{1}{e}$+ln2D.$\frac{1}{e}$+ln2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知在平面直角坐標(biāo)系xOy中,直線l過點(diǎn)P($\sqrt{3}$,0),且傾斜角為$\frac{π}{3}$,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.半徑為4的圓C的圓心的極坐標(biāo)為(4,$\frac{π}{2}$)
(1)寫出直線l的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)試判定直線l和圓C的位置關(guān)系.若相交,求相交弦的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)在△ABC中,已知a-b=4,a+c=2b,且最大角為120°,求△ABC的三邊長.
(2)在銳角三角形中,邊a、b是方程x2-2$\sqrt{3}$x+2=0的兩根,角A、B滿足2sin(A+B)-$\sqrt{3}$=0,求角C的度數(shù),邊c的長度及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.甲、乙兩地準(zhǔn)備開通全線長1750km的高鐵.已知運(yùn)行中高鐵每小時所需的能源費(fèi)用W(萬元)和速度V(km/h)的立方成正比,當(dāng)速度為100km/h時,能源費(fèi)用是每小時0.06萬元,其余費(fèi)用(與速度無關(guān))是每小時3.24萬元,已知最大速度不超過C(km/h)(C為常數(shù),0<C≤400).
(1)求高鐵運(yùn)行全程所需的總費(fèi)用y與列車速度v的函數(shù)關(guān)系;
(2)當(dāng)高鐵速度為多少時,運(yùn)行全程所需的總費(fèi)用最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列命題:
①集合{a,b,c,d}的子集個數(shù)有16個;
②定義在R上的奇函數(shù)f(x)必滿足f(0)=0;
③f(x)=(2x+1)2-2(2x-1)既不是奇函數(shù)又不是偶函數(shù);
④A=R,B=R,f:x→$\frac{1}{|x|}$,從集合A到集合B的對應(yīng)關(guān)系f是映射;
⑤f(x)=$\frac{1}{x}$在定義域上是減函數(shù).
其中真命題的序號是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知某三角函數(shù)的部分圖象如圖所示,則它的解析式可能是( 。
A.$y=sin(x+\frac{π}{4})$B.$y=sin(2x+\frac{3π}{4})$C.$y=cos(x+\frac{π}{4})$D.$y=cos(2x+\frac{3π}{4})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.利用函數(shù)單調(diào)性定義證明函數(shù)f(x)=2-$\frac{1}{x}$在(0,+∞)上為增函數(shù).

查看答案和解析>>

同步練習(xí)冊答案