分析 (1)由題意可知求得兩直線的交點(diǎn),由垂直于直線3x-2y-1=0的直線方程是:2x+3y+c=0,代入即可求得c的值,求得直線l的方程;
(2)分別令x=0,y=0,求出直線的橫截距和縱截距即可.
解答 解:(1)設(shè)垂直于直線3x-2y-1=0的直線方程是:2x+3y+c=0,
設(shè)直線l過直線3x+4y-5=0和2x+y=0的交點(diǎn)P(x,y);
由$\left\{\begin{array}{l}{3x+4y-5=0}\\{2x+y=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$,
P(-1,2),
代入2x+3y+c=0得:-2+6+c=0,
解得:c=-4,
∴直線l:2x+3y-4=0;
(2)由(1)x=0時,y=$\frac{4}{3}$,縱截距是$\frac{4}{3}$;
y=0時,x=2,橫截距是2.
點(diǎn)評 本題考查求直線的交點(diǎn)坐標(biāo)的方法,考查與直線垂直的直線方程的求法,考查計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{e}$+ln2 | B. | -$\frac{1}{e}$+ln2 | C. | 1-$\frac{1}{e}$+ln2 | D. | $\frac{1}{e}$+ln2-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=sin(x+\frac{π}{4})$ | B. | $y=sin(2x+\frac{3π}{4})$ | C. | $y=cos(x+\frac{π}{4})$ | D. | $y=cos(2x+\frac{3π}{4})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com