【題目】設(shè)函數(shù)f(x)=2cos2x+sin2x+a(a∈R).
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng) 時(shí),f(x)的最大值為2,求a的值,并求出y=f(x)(x∈R)的對(duì)稱軸方程.
【答案】
(1)解:f(x)=1+cos2x+sin2x+a= sin(2x+ )+1+a,
∵ω=2,∴T=π,
∴f(x)的最小正周期π;
當(dāng)2kπ﹣ ≤2x+ ≤2kπ+ (k∈Z)時(shí)f(x)單調(diào)遞增,
解得:kπ﹣ ≤x≤kπ+ (k∈Z),
則x∈[kπ﹣ ,kπ+ ](k∈Z)為f(x)的單調(diào)遞增區(qū)間;
(2)解:當(dāng)x∈[0, ]時(shí), ≤2x+ ≤ ,
當(dāng)2x+ = ,即x= 時(shí),sin(2x+ )=1,
則f(x)max= +1+a=2,
解得:a=1﹣ ,
令2x+ =kπ+ (k∈Z),得到x= + (k∈Z)為f(x)的對(duì)稱軸.
【解析】(1)函數(shù)f(x)解析式第一項(xiàng)利用二倍角的余弦函數(shù)公式化簡,再利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),找出ω的值代入周期公式即可求出函數(shù)的最小正周期;由正弦函數(shù)的單調(diào)遞增區(qū)間為[2kπ﹣ ,2kπ+ ](k∈Z)求出x的范圍即為函數(shù)的遞增區(qū)間;(2)由x的范圍求出這個(gè)角的范圍,利用正弦函數(shù)的單調(diào)性求出正弦函數(shù)的最大值,表示出函數(shù)的最大值,由已知最大值求出a的值即可,令這個(gè)角等于kπ+ (k∈Z),求出x的值,即可確定出對(duì)稱軸方程.
【考點(diǎn)精析】掌握兩角和與差的正弦公式和二倍角的余弦公式是解答本題的根本,需要知道兩角和與差的正弦公式:;二倍角的余弦公式:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)實(shí)數(shù)a,b滿足a+2b=9.
(1)若|9﹣2b|+|a+1|<3,求a的取值范圍;
(2)若a,b>0,且z=ab2 , 求z的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解該校高三年級(jí)學(xué)生數(shù)學(xué)科學(xué)習(xí)情況,對(duì)廣一?荚嚁(shù)學(xué)成績進(jìn)行分析,從中抽取了n 名學(xué)生的成績作為樣本進(jìn)行統(tǒng)計(jì)(該校全體學(xué)生的成績均在[60,140),按照[60,70),[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)的分組作出頻率分布直方圖如圖1所示,樣本中分?jǐn)?shù)在[70,90)內(nèi)的所有數(shù)據(jù)的莖葉圖如圖2所示.
根據(jù)上級(jí)統(tǒng)計(jì)劃出預(yù)錄分?jǐn)?shù)線,有下列分?jǐn)?shù)與可能被錄取院校層次對(duì)照表為表( c ).
分?jǐn)?shù) | [50,85] | [85,110] | [110,150] |
可能被錄取院校層次 | ? | 本科 | 重本 |
(1)求n和頻率分布直方圖中的x,y的值;
(2)根據(jù)樣本估計(jì)總體的思想,以事件發(fā)生的頻率作為概率,若在該校高三年級(jí)學(xué)生中任取3 人,求至少有一人是可能錄取為重本層次院校的概率;
(3)在選取的樣本中,從可能錄取為重本和專科兩個(gè)層次的學(xué)生中隨機(jī)抽取3 名學(xué)生進(jìn)行調(diào)研,用ξ表示所抽取的3 名學(xué)生中為重本的人數(shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線C:y2=3px(p≥0)的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5,若以MF為直徑的圓過點(diǎn)(0,2),則C的方程為( )
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC,D為△ABC外接圓劣弧 上的點(diǎn)(不與點(diǎn)A,C重合),延長BD至E,延長AD交BC的延長線于F.
(1)求證:∠CDF=∠EDF;
(2)求證:ABACDF=ADFCFB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】程序框圖如圖:如果上述程序運(yùn)行的結(jié)果S=1320,那么判斷框中應(yīng)填入( )
A.K<10
B.K≤10
C.K<11
D.K≤11
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: + =1(a>b>0)過點(diǎn) ,且離心率e為 .
(1)求橢圓E的方程;
(2)設(shè)直線x=my﹣1(m∈R)交橢圓E于A,B兩點(diǎn),判斷點(diǎn)G 與以線段AB為直徑的圓的位置關(guān)系,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com