【題目】已知橢圓E: + =1(a>b>0)過點 ,且離心率e為 .
(1)求橢圓E的方程;
(2)設(shè)直線x=my﹣1(m∈R)交橢圓E于A,B兩點,判斷點G 與以線段AB為直徑的圓的位置關(guān)系,并說明理由.
【答案】
(1)解:由已知得 ,解得 ,
∴橢圓E的方程為 .
(2)設(shè)點A(x1y1),B(x2,y2),AB中點為H(x0,y0).
由 ,化為(m2+2)y2﹣2my﹣3=0,
∴y1+y2= ,y1y2= ,∴y0= .
G ,
∴|GH|2= = + = + + .
= = = ,
故|GH|2﹣ = + = ﹣ + = >0.
∴ ,故G在以AB為直徑的圓外.
【解析】解法一:(1)由已知得 ,解得即可得出橢圓E的方程.(2)設(shè)點A(x1 , y1),B(x2 , y2),AB中點為H(x0 , y0).直線方程與橢圓方程聯(lián)立化為(m2+2)y2﹣2my﹣3=0,利用根與系數(shù)的關(guān)系中點坐標(biāo)公式可得:y0= .|GH|2= . = ,作差|GH|2﹣ 即可判斷出.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )圖象如圖所示,則下列關(guān)于函數(shù) f (x)的說法中正確的是( )
A.對稱軸方程是x= +kπ(k∈Z)
B.對稱中心坐標(biāo)是( +kπ,0)(k∈Z)
C.在區(qū)間(﹣ , )上單調(diào)遞增
D.在區(qū)間(﹣π,﹣ )上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x(a+lnx)有極小值﹣e﹣2 . (Ⅰ)求實數(shù)a的值;
(Ⅱ)若k∈Z,且 對任意x>1恒成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2cos2x+sin2x+a(a∈R).
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng) 時,f(x)的最大值為2,求a的值,并求出y=f(x)(x∈R)的對稱軸方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù) ,為了得到函數(shù)g(x)=sin2x的圖象,則只需將f(x)的圖象( )
A.向右平移 個長度單位
B.向右平移 個長度單位
C.向左平移 個長度單位
D.向左平移 個長度單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=x2+|x﹣m|(m為實數(shù))是偶函數(shù),記a=f(log e),b=f(log3π),c=f(em)(e為自然對數(shù)的底數(shù)),則a,b,c的大小關(guān)系( )
A.a<b<c
B.a<c<b
C.c<a<b
D.c<b<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)甲、乙兩人每次射擊命中目標(biāo)的概率分別為 ,且各次射擊相互獨立,若按甲、乙、甲、乙…的次序輪流射擊,直到有一人擊中目標(biāo)就停止射擊,則停止射擊時,甲射擊了兩次的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 ,函數(shù) . (Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,若 ,a=2,求b+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,a,b,c成等比數(shù)列,且a2﹣c2=ac﹣bc.
(Ⅰ)求∠A的大;
(Ⅱ)若a= ,且sinA+sin(B﹣C)=2sin2C,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com