【題目】甲、乙二人參加普法知識(shí)競(jìng)答,共有10個(gè)不同的題目,其中選擇題6個(gè),判斷題4個(gè).甲、乙二人依次各抽一題.
(1)甲抽到選擇題、乙抽到判斷題的概率是多少?
(2)甲、乙二人中至少有一人抽到選擇題的概率是多少?
【答案】
(1)解:由題意知本題是一個(gè)等可能事件的概率,
甲從選擇題中抽到一題的可能結(jié)果有C61個(gè),乙依次從判斷題中抽到一題的可能結(jié)果有C41個(gè),
故甲抽到選擇題、乙依次抽到判斷題的可能結(jié)果有C61C41個(gè);
試驗(yàn)發(fā)生包含的所有事件是甲、乙依次抽一題的可能結(jié)果有概率為C101C91個(gè),
∴甲抽到選擇題、乙依次抽到判斷題的概率為 ,
∴所求概率為
(2)解:甲、乙二人中至少有一人抽到選擇題的對(duì)立事件是甲、乙二人依次都抽到判斷題,
∵甲、乙二人依次都抽到判斷題的概率為 ,
∴甲、乙二人中至少有一人抽到選擇題的概率為 ,
∴所求概率為
【解析】(1)由題意知本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的所有事件是甲、乙依次抽一題,滿足條件的事件是甲從選擇題中抽到一題,乙依次從判斷題中抽到一題根據(jù)分步計(jì)數(shù)原理知故甲抽到選擇題、乙依次抽到判斷題的可能結(jié)果,根據(jù)概率公式得到結(jié)果.(2)甲、乙二人中至少有一人抽到選擇題的對(duì)立事件是甲、乙二人依次都抽到判斷題,先做出甲和乙都抽到判斷題的概率,根據(jù)對(duì)立事件的概率公式得到結(jié)果.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用組合與組合數(shù)的公式的相關(guān)知識(shí)可以得到問題的答案,需要掌握從n個(gè)不同的元素中任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險(xiǎn)公司有一款保險(xiǎn)產(chǎn)品的歷史收益率(收益率=利潤(rùn)÷保費(fèi)收入)的頻率分布直方圖如圖所示:
(Ⅰ)試估計(jì)平均收益率;
(Ⅱ)根據(jù)經(jīng)驗(yàn),若每份保單的保費(fèi)在20元的基礎(chǔ)上每增加元,對(duì)應(yīng)的銷量(萬份)與(元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下5組與的對(duì)應(yīng)數(shù)據(jù):
據(jù)此計(jì)算出的回歸方程為.
(i)求參數(shù)的估計(jì)值;
(ii)若把回歸方程當(dāng)作與的線性關(guān)系,用(Ⅰ)中求出的平均收益率估計(jì)此產(chǎn)品的收益率,每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大收益,并求出該最大收益.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}中,a1=,前n項(xiàng)和Sn滿足Sn+1-Sn=()n+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式an以及前n項(xiàng)和Sn;
(2)若S1,t(S1+S2),3(S2+S3)成等差數(shù)列,求實(shí)數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個(gè)命題中:
①某地市高三理科學(xué)生有15000名,在一次調(diào)研測(cè)試中,數(shù)學(xué)成績(jī)服從正態(tài)分布,已知,若按成績(jī)分層抽樣的方式抽取100份試卷進(jìn)行分析,則應(yīng)從120分以上(包括120分)的試卷中抽取份;
②已知命題,則:;
③在上隨機(jī)取一個(gè)數(shù),能使函數(shù)在上有零點(diǎn)的概率為;
④設(shè),則“”是“”的充要條件.
其中真命題的序號(hào)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, ,,是的中點(diǎn),是棱上的點(diǎn),,,,.
(1)求證:平面底面;
(2)設(shè),若二面角的平面角的大小為,試確定的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足:
(1)求的值;
(2)求證:數(shù)列是等比數(shù)列;
(3)令(),如果對(duì)任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N* . (Ⅰ)證明:數(shù)列{ }是等差數(shù)列;
(Ⅱ)設(shè)bn=3n ,求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,以原點(diǎn)O為圓心,橢圓C的長(zhǎng)半軸長(zhǎng)為半徑的圓與直線相切.
⑴求橢圓C的標(biāo)準(zhǔn)方程;
⑵已知點(diǎn)A、B為動(dòng)直線與橢圓C的兩個(gè)交點(diǎn),問:在x軸上是否存在定點(diǎn)E,使得為定值?若存在,試求出點(diǎn)E的坐標(biāo)和定值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com