18.已知點(diǎn)A,B分別在射線CM,CN(不含端點(diǎn)C)上運(yùn)動(dòng),∠MCN=$\frac{2π}{3}$,在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c
(1)若a,b,c依次成等差數(shù)列,且公差為2,求c的值:
(2)若c=$\sqrt{3}$,∠ABC=θ,試用θ表示△ABC的周長(zhǎng),并求周長(zhǎng)的最大值.

分析 (1)由題意可得a=c-4,b=c-2,由余弦定理cos∠MCN=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=-$\frac{1}{2}$可得c的方程,解方程驗(yàn)證即可;
(2)由題意可得周長(zhǎng)y=2sinθ+2sin($\frac{π}{3}$-θ)+$\sqrt{3}$=2sin($\frac{π}{3}$+θ)+$\sqrt{3}$,由三角函數(shù)的最值可得.

解答 解:(1)∵a,b,c依次成等差數(shù)列,且公差為2
∴a=c-4,b=c-2,
在△ABC中,∵$∠MCN=\frac{2π}{3}∴cos∠MCN=-\frac{1}{2}$,
由余弦定理可得cos∠MCN=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=-$\frac{1}{2}$,
代值并整理可得c2-9c+14=0,解得c=2或c=7,
∵a=c-4>0,∴c>4,∴c=7;
(2)由題意可得周長(zhǎng)y=2sinθ+2sin($\frac{π}{3}$-θ)+$\sqrt{3}$
=2sin($\frac{π}{3}$+θ)+$\sqrt{3}$,
∴當(dāng)$\frac{π}{3}$+θ=$\frac{π}{2}$即θ=$\frac{π}{6}$時(shí),周長(zhǎng)取最大值2+$\sqrt{3}$.

點(diǎn)評(píng) 本題考查解三角形,涉及余弦定理和三角函數(shù)的值域,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x6)=log2x.
(1)求f(x)的解析式;
(2)求f($\frac{1}{8}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.各項(xiàng)均不為零的數(shù)列{an},首項(xiàng)a1=1,且對(duì)于任意n∈N*均有6an+1-an+1an-2an=0,bn=$\frac{1}{a_n}$.
(1)求{bn}的通項(xiàng)公式.
(2)若{bn}的前n項(xiàng)和為Tn,求證:當(dāng)n≥2時(shí),$\frac{8}{3}(n+1){T_n}$>(n+1)Cn+102n+nCn+112n-1+(n-1)Cn+122n-2+…+(n+1-k)Cn+1k2n-k+…+Cn+1n20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將函數(shù)f(x)=$sin(2x-\frac{π}{4})$向右平移$\frac{3π}{8}$個(gè)單位,再將所得的函數(shù)圖象上的各點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)與x=-$\frac{π}{2}$,x=$\frac{π}{3}$,x軸圍成的圖形面積為( 。
A.$\frac{5}{2}$B.$1+\frac{{\sqrt{3}}}{2}$C.$\frac{3}{2}$D.$1-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在xo(a<xo<b),滿足f(xo)=$\frac{f(b)-f(a)}{b-a}$,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,xo是它的一個(gè)均值點(diǎn).例如y=|x|是區(qū)間[-2,2]上的“平均值函數(shù)”,O就是它的均值點(diǎn).
(I)若函數(shù)f(x)=x2-mx-1是[-1,1]上的“平均值函數(shù)”,則實(shí)數(shù)m的取值范圍是(0,2).
(II)若函數(shù)f(x)=lnx是區(qū)間[a,b](b>a≥1)上的“平均值函數(shù)”,xo是它的一個(gè)均值點(diǎn),要使得lnx°<$\frac{m}{{\sqrt{ab}}}$恒成立,參數(shù)m的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=$\frac{{{a_n}({a_n}+2)}}{4}$(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:$\frac{1}{{{a_1}^3}}+\frac{1}{{{a_2}^3}}+\frac{1}{{{a_3}^3}}+…+\frac{1}{{{a_n}^3}}<\frac{5}{32}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,若$\overrightarrow{CA}•\overrightarrow{CB}=0$,則△ABC是(  )
A.銳角三角形B.鈍角三角形C.直角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若$\frac{cosA-2cosC}{cosB}$=$\frac{2c-a}$,則$\frac{sinC}{sinA}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}滿足a1=5,a2=5,an+1=an+6an-1(n≥2)
(1)求證:{an+1+2an}是等比數(shù)列
(2)求數(shù)列{an}的通項(xiàng)公式
(3)設(shè)3nbn=n(3n-an),求|b1|+|b2|+…+|bn|<m對(duì)于n∈N*恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案