設(shè)函數(shù)數(shù)學(xué)公式,g(x)=(a+2)x+5-3a.
(1)求函數(shù)f(x)在區(qū)間[0,1]上的值域;
(2)若對(duì)于任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實(shí)數(shù)a的取值范圍..

解:(1)∵,
設(shè)0≤x1≤x2≤1,
則f(x1)-f(x2)=
=,
∴f(x1)<f(x2),
故f(x)在[0,1]上是增函數(shù),
∴f(x)min=f(0)=0,
f(x)max=f(1)=1,
故函數(shù)f(x)在區(qū)間[0,1]上的值域?yàn)閇0,1].
(2)∵g(x)=(a+2)x+5-3a,
記f(x),g(x)在區(qū)間[0,1]上的值域分別是A,B,
由題意知A⊆B,
由(1)知,A=[0,1],
當(dāng)a>-2時(shí),B=[g(0),g(1)]=[5-3a,7-2a],
,解得;
當(dāng)a=2時(shí),B={11},不合題意.
當(dāng)a<-2時(shí),B=[g(1),g(0)]=[7-2a,5-3a],則,無(wú)解.
綜上所述,a的取值范圍是[,3].
分析:(1)設(shè)0≤x1≤x2≤1,用定義證明f(x)在[0,1]上是增函數(shù),由此能求出函數(shù)f(x)在區(qū)間[0,1]上的值域.
(2)記f(x),g(x)在區(qū)間[0,1]上的值域分別是A,B,由題意知A⊆B,根據(jù)實(shí)數(shù)a+2的取值進(jìn)行分類討論,能求出a的取值范圍.
點(diǎn)評(píng):本題考查函數(shù)的值域的求法,考查滿足條件的實(shí)數(shù)的取值范圍的求法,解題時(shí)要認(rèn)真審題,注意分類討論思想的應(yīng)用,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-3a2x+b(a,b∈R)在x=2處的切線方程為y=9x-14.
(1)求函數(shù)f(x)的解析式;
(2)令函數(shù)g(x)=x2-2x+k
①若存在x1,x2∈[0,2],使得f(x1)≥g(x2)能成立,求實(shí)數(shù)k的取值范圍;
②設(shè)函數(shù)y=g(x)的圖象與直線x=2交于點(diǎn)P,試問(wèn):過(guò)點(diǎn)P是否可作曲線y=f(x)的三條切線?若可以,求出k的取值范圍;若不可以,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•合肥模擬)已知函數(shù)f(x)=ex-a(x-1),x∈R.
(1)若實(shí)數(shù)a>0,求函數(shù)f(x)在(0,+∞)上的極值;
(2)記函數(shù)g(x)=f(2x),設(shè)函數(shù)y=g(x)的圖象C與y軸交于P點(diǎn),曲線C在P點(diǎn)處的切線與兩坐標(biāo)軸所圍成的圖形的面積為S(a),求當(dāng)a>1時(shí)S(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=g(x)為奇函數(shù),f(x)=2+g(x)的最大值為M,最小值為m,則M+m=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-a(x-1),x∈R,其中a為實(shí)數(shù).
(1)若實(shí)數(shù)a>0,求函數(shù)f(x)在(0,+∞)上的極值.
(2)記函數(shù)g(x)f(2x),設(shè)函數(shù)y=g(x)的圖象C與y軸交于P點(diǎn),曲線C在P點(diǎn)處的切線與兩坐標(biāo)軸所圍成的圖形的面積為S(a),當(dāng)a>1時(shí),求S(a)的最小值;
(3)當(dāng)x∈(0,+∞)時(shí),不等式f(x)+f′(x)+x3-2x2≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•昌平區(qū)二模)如果函數(shù)y=f(x)的定義域?yàn)镽,對(duì)于定義域內(nèi)的任意x,存在實(shí)數(shù)a使得f(x+a)=f(-x)成立,則稱此函數(shù)具有“P(a)性質(zhì)”.
(I)判斷函數(shù)y=sinx是否具有“P(a)性質(zhì)”,若具有“P(a)性質(zhì)”,求出所有a的值;若不具有“P(a)性質(zhì)”,請(qǐng)說(shuō)明理由;
(II)設(shè)函數(shù)y=g(x)具有“P(±1)性質(zhì)”,且當(dāng)-
1
2
≤x≤
1
2
時(shí),g(x)=|x|.若y=g(x)與y=mx交點(diǎn)個(gè)數(shù)為2013個(gè),求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案