11.在等比數(shù)列{an}中,a1=1,a4=8,則數(shù)列{an}的前5項(xiàng)和是( 。
A.$\frac{85}{2}$B.32C.64D.31

分析 利用等比數(shù)列的通項(xiàng)公式與求和公式即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q,∵a1=1,a4=8,∴q3=8,解得q=2.
則數(shù)列{an}的前5項(xiàng)和=$\frac{{2}^{5}-1}{2-1}$=31.
故選:D.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=$\sqrt{5}$,|$\overrightarrow{c}$|=1,若($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow$-$\overrightarrow{c}$)=0,則|$\overrightarrow{a}$-$\overrightarrow$|的取值范圍是( 。
A.[1,2]B.[2,4]C.[$\sqrt{7}$-1,$\sqrt{7}$+1]D.[$\sqrt{5}$-1,$\sqrt{5}$+1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.某公司的組織結(jié)構(gòu)圖如圖所示,其中技術(shù)服務(wù)部的直接領(lǐng)導(dǎo)是( 。
A.董事長(zhǎng)B.監(jiān)事會(huì)C.總經(jīng)理D.總工程師

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)$f(x)=\left\{\begin{array}{l}({4a-3})x+2a-4,x≤t\\ 2{x^3}-6x,x>t\end{array}\right.$,無(wú)論t取何值,函數(shù)f(x)在R上總是不單調(diào),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,1)B.$[{\frac{1}{4},+∞})$C.$[{\frac{3}{4},+∞})$D.$({-∞,\frac{3}{4}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在三棱柱ABC-A1B1C1中,$AB=BC=\sqrt{5},AC=2$且點(diǎn)A1在底面ABC上的射影O恰是線段AC的中點(diǎn),$A{A_1}=\sqrt{5}$.
(1)判斷A1B與B1C是否垂直,并證明你的結(jié)論;
(2)求點(diǎn)A1到平面BCC1B1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖 已知四邊形 ABCD 為直角梯形,AB⊥AD,DC∥AB,且邊 AB、AD、DC 的長(zhǎng)分別為 7cm,4cm,4cm,分別以 AB、AD、DC 三邊所在直線為旋轉(zhuǎn)軸,求所得幾何體體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.下面給出四種說(shuō)法:
①用相關(guān)指數(shù)R2來(lái)刻畫回歸效果,R2越小,說(shuō)明模型的擬合效果越好;
②命題P:“?x0∈R,x02-x0-1>0”的否定是¬P:“?x∈R,x2-x-1≤0”;
③設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),若P(x>1)=p,則P(-1<X<0)=$\frac{1}{2}$-p
④回歸直線一定過(guò)樣本點(diǎn)的中心($\overline{x}$,$\overline{y}$).
其中正確的說(shuō)法有②③④(請(qǐng)將你認(rèn)為正確的說(shuō)法的序號(hào)全部填寫在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在三棱錐A-BCD中,已知△ABD,△BCD都是邊長(zhǎng)為2的等邊三角形,E為BD中點(diǎn),且AE⊥平面BCD,F(xiàn)為線段AB上一動(dòng)點(diǎn),記$\frac{BF}{BA}=λ$.
(1)當(dāng)$λ=\frac{1}{3}$時(shí),求異面直線DF與BC所成角的余弦值;
(2)當(dāng)CF與平面ACD所成角的正弦值為$\frac{{\sqrt{15}}}{10}$時(shí),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知e是自然對(duì)數(shù)的底數(shù),函數(shù)f(x)=(ax2+x)ex,若f(x)在[-1,1]上是單調(diào)增函數(shù),則a的取值范圍是( 。
A.[-$\frac{2}{3}$,0]B.(-∞,0)∪[$\frac{2}{3}$,+∞)C.[0,$\frac{2}{3}$]D.(-∞,-$\frac{2}{3}$]∪[0,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案