A. | (-∞,1) | B. | $[{\frac{1}{4},+∞})$ | C. | $[{\frac{3}{4},+∞})$ | D. | $({-∞,\frac{3}{4}}]$ |
分析 判斷函數(shù)的單調(diào)性,列出不等式,轉(zhuǎn)化求解a的范圍即可.
解答 解:y=2x3-6x,x>t,
y′=6x2-6>0,可得x>1或x<-1,即y=2x3-6x在x∈(1,+∞)是增函數(shù),如果4a-3>0,總存在實(shí)數(shù)t,使得(4a-3)t+2a-1≤2t3-6t成立,此時函數(shù)是單調(diào)增函數(shù),函數(shù)$f(x)=\left\{\begin{array}{l}({4a-3})x+2a-4,x≤t\\ 2{x^3}-6x,x>t\end{array}\right.$,無論t取何值,函數(shù)f(x)在R上總是不單調(diào),只需4a-3≤0,解得a≤$\frac{3}{4}$.
故選:D.
點(diǎn)評 本題考查函數(shù)的單調(diào)性導(dǎo)數(shù)的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1:1:3 | B. | 1:2:3 | C. | 1:3:2 | D. | 1:4:1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{85}{2}$ | B. | 32 | C. | 64 | D. | 31 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com