6.函數(shù)y=$\sqrt{3}$sinx-cosx的振幅和頻率分別為(  )
A.$\sqrt{3}$,$\frac{1}{π}$B.2,$\frac{1}{2π}$C.$\sqrt{3}$,πD.2,2π

分析 將函數(shù)進行化簡,結(jié)合三角函數(shù)的物理意義即可求函數(shù)y=$\sqrt{3}$sinx-cosx的振幅和頻率.

解答 解:y=$\sqrt{3}$sinx-cosx
=$2(\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx)$=$2sin(x-\frac{π}{6})$
∴函數(shù)y=$\sqrt{3}$sinx-cosx的振幅為2,頻率f=$\frac{1}{T}=\frac{ω}{2π}=\frac{1}{2π}$.
故選:B.

點評 本題主要考查三角函數(shù)的物理意義,利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.平面上畫了一些彼此相距10的平行線,把一枚半徑為3的硬幣任意擲在平面上,則硬幣不與任一條平行線相碰的概率為( 。
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{3}{8}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,四棱錐P-ABCD中,ABCD為矩形,△PAD為等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分別為PC和BD的中點.
(1)證明:EF∥面PAD;
(2)證明:面PDC⊥面PAD;
(3)求銳二面角B-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=$\sqrt{2}$,CE=EF=1.
(1)求證:AF∥平面BDE;
(2)求證:CF⊥平面BDE.
(3)求直線DB與平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若sinθ=$\frac{3}{5}$,θ為第二象限角,則sin2θ≡-$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=$\sqrt{7}$sinx+3cosx,x∈R的最大值為m,最小值為n,則|m|+|n|=( 。
A.16B.3+$\sqrt{7}$C.8D.6+2$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知cosx=-$\frac{3}{5}$,x∈(0,π)
(Ⅰ)求cos(x-$\frac{π}{4}$)的值;        
(Ⅱ)求sin(2x+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知tan$\frac{θ}{2}$=3,則sinθ=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知i是虛數(shù)單位,z=$\frac{2-i}{2+i}-{i^{2016}}$,且z的共軛復(fù)數(shù)為$\overline z$,則$\overline z$在復(fù)平面內(nèi)對應(yīng)的點在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案