分析 (1)設(shè)切點(diǎn)為(x0,y0),求出函數(shù)y=f(x+a)的導(dǎo)數(shù),求得切線的斜率,解方程可得a=1;
(2)求出g(x)和h(x)的導(dǎo)數(shù),運(yùn)用韋達(dá)定理和函數(shù)的零點(diǎn)的定義,化簡(jiǎn)整理,構(gòu)造函數(shù),運(yùn)用導(dǎo)數(shù)判斷單調(diào)性,即可得到所求最小值.
解答 解:(1)由題意得,函數(shù)y=f(x+a)=ln(x+a)與直線y=x相切,
設(shè)切點(diǎn)為(x0,y0),$y'=f'(x+a)=\frac{1}{x+a}$,
∴${\left.{y'}\right|_{x={x_0}}}=\frac{1}{{{x_0}+a}}=1$,∴x0+a=1又有x0=ln(x0+a)
∴x0=0,a=1;
(2)$g(x)=lnx+\frac{1}{2}{x^2}-mx(m≥\frac{5}{2})$,h(x)=lnx-cx2-bx
由已知$g'(x)=\frac{{{x^2}-mx+1}}{x}=0$的兩根為x1,x2,
當(dāng)$m≥\frac{5}{2}$時(shí)方程x2-mx+1=0的△>0,
則x1+x2=m,x1x2=1,
又由x1,x2為h(x)=lnx-cx2-bx的零點(diǎn)可得$\left\{{\begin{array}{l}{ln{x_1}-cx_1^2-b{x_1}=0}\\{ln{x_2}-cx_2^2-b{x_2}=0}\end{array}}\right.$,
兩式相減$ln\frac{x_1}{x_2}-c({x_1}+{x_2})({x_1}-{x_2})-b({x_1}-{x_2})=0$,可解得$b=\frac{{ln\frac{x_1}{x_2}}}{{{x_1}-{x_2}}}-c({x_1}+{x_2})$①
而$y=({x_1}-{x_2})h'(\frac{{{x_1}+{x_2}}}{2})$=(x1-x2)[$\frac{2}{{{x_1}+{x_2}}}-c({x_1}+{x_2})-b]$代入①式
可得y=$({x_1}-{x_2})(\frac{2}{{{x_1}+{x_2}}}-\frac{{ln\frac{x_1}{x_2}}}{{{x_1}-{x_2}}})$=$2\frac{{{x_1}-{x_2}}}{{{x_1}+{x_2}}}-ln\frac{x_1}{x_2}$=$2\frac{{\frac{x_1}{x_2}-1}}{{\frac{x_1}{x_2}+1}}-ln\frac{x_1}{x_2}$,
令$\frac{x_1}{x_2}=t$(0<t<1),由x1+x2=m,x1x2=1可得$t+\frac{1}{t}+2={m^2}$,則$t∈(0,\frac{1}{4}]$,
設(shè)函數(shù)$G(t)=2\frac{t-1}{t+1}-lnt$,而$G'(t)=\frac{{-{{(t-1)}^2}}}{{t{{(t+1)}^2}}}<0$,
則y=G(t)在$t∈(0,\frac{1}{4}]$單調(diào)遞減,
所以$G{(t)_{min}}=G(\frac{1}{4})=-\frac{6}{5}+ln4$,
即$y=({x_1}-{x_2})h'(\frac{{{x_1}+{x_2}}}{2})$的最小值為$-\frac{6}{5}+ln4$.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率、單調(diào)區(qū)間和最值,同時(shí)考查二次方程的韋達(dá)定理和函數(shù)的零點(diǎn),考查運(yùn)算求解能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 9 | B. | 14 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
PM2.5日均濃度 | 0~35 | 35~75 | 75~115 | 115~150 | 150~250 | >250 |
空氣質(zhì)量級(jí)別 | 一級(jí) | 二級(jí) | 三級(jí) | 四級(jí) | 五級(jí) | 六級(jí) |
空氣質(zhì)量類別 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,0) | C. | (0,1] | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com