18.等比數(shù)列{an}中,a4=2,a5=4,則數(shù)列{lgan}的前8項和等于12lg2.

分析 由等比數(shù)列的性質(zhì)可得:a1a8=…=a4a5=8.再利用對數(shù)的運算性質(zhì)即可得出.

解答 解:由等比數(shù)列的性質(zhì)可得:a1a8=…=a4a5=8.
∴數(shù)列{lgan}的前8項和=lg(a1a2…a8)=lg84=12lg2.
故答案為:12lg2.

點評 本題考查了等比數(shù)列的通項公式與性質(zhì)、對數(shù)運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.數(shù)列{an}滿足$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=d(n∈N*,d為常數(shù)),則稱數(shù)列{an}為調(diào)和數(shù)列,記數(shù)列{$\frac{1}{{x}_{n}}$}為調(diào)和數(shù)列,且x1+x2+…+x22=77,則x11+x12=7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知x∈R,命題P:x≥0,命題$q:2x+\frac{1}{2x+1}≥1$,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知cos(π+θ)=$\frac{1}{3}$,求$\frac{cos(2π-θ)}{{sin(\frac{π}{2}+θ)cos(π-θ)+cos(-θ)}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,四邊形ABCD是邊長為2的菱形,∠ABC=60°,PA⊥平面ABCD,E為PC中點.求證:平面BED⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知數(shù)列{an}滿足a1=1,an+1=$\frac{a_n}{{1+{a_n}}}$,(n∈N*
(1)證明數(shù)列$\left\{{\frac{1}{a_n}}\right\}$是等差數(shù)列,并求出通項an
(2)若$\frac{2}{3}$<a1•a2+a2•a3+a3•a4+…+an-1•an<$\frac{5}{6}$,求n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知$a={π^{\frac{1}{2}}},b={log_π}\frac{1}{2},c={log_{\frac{1}{π}}}\frac{1}{2}$,則( 。
A.a>b>cB.a>c>bC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知關(guān)于x的不等式|x-a|+|x-3|≥2a的解集為R,則實數(shù)a的最大值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.(1)計算:8${\;}^{\frac{2}{3}}$+($\frac{16}{81}$)${\;}^{-\frac{3}{4}}$-($\sqrt{2}$-1)0;
(2)計算:9${\;}^{lo{g}_{9}2}$+$\frac{1}{3}$log68-2log${\;}_{{6}^{-1}}$$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案