分析 (1)利用任意角的三角函數的定義,求得sinα的值,可得$f(\frac{α}{2}-\frac{π}{12})$的值;
(2)根據$x∈[-\frac{π}{6},\frac{π}{3}]$,利用正弦函數的定義域和值域,求得f(x)的值域.
解答 解:(1)∵點$P(1,-\sqrt{3})$在角α的終邊上,∴$sinα=\frac{{-\sqrt{3}}}{{\sqrt{{1^2}+{{(-\sqrt{3})}^2}}}}=-\frac{{\sqrt{3}}}{2}$,
∴$f(\frac{α}{2}-\frac{π}{12})=2sin[2(\frac{α}{2}-\frac{π}{12})+\frac{π}{6}]=2sinα=-\sqrt{3}$.
(2)∵$x∈[-\frac{π}{6},\frac{π}{3}]$,∴$2x+\frac{π}{6}∈[-\frac{π}{6},\frac{5π}{6}]$,∴$-\frac{1}{2}≤sin(2x+\frac{π}{6})≤1$,
∴$-1≤2sin(2x+\frac{π}{6})≤2$,即函數的值域為[-1,2].
點評 本題主要考查任意角的三角函數的定義,正弦函數的定義域和值域,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com