2.一艘輪船由海平面上A地出發(fā)向南偏西40°的方向行駛40海里到達(dá)B地,再由B地向北偏西20°的方向行駛40海里到達(dá)C地,則A、C兩地相距40海里.

分析 由已知可得△ABC是等邊三角形,從而不難求得AC的距離.

解答 解:由題意得∠ABC=60°,AB=BC,
∴△ABC是等邊三角形,
∴AC=AB=40海里.
故答案為:40.

點評 本題主要考查了方向角含義,能夠證明△ABC是等邊三角形是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.化簡:$\frac{{{a^2}+2ab+{b^2}}}{{{a^2}-{b^2}}}$-$\frac{a-b}$的結(jié)果是(  )
A.$\frac{a}{a-b}$B.$\frac{a-b}$C.$\frac{a}{a+b}$D.$\frac{a+b}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.用反證法證明“$\sqrt{3},\sqrt{5},\sqrt{7}$不可能成等差數(shù)列”時,第一步應(yīng)假設(shè):$\sqrt{3},\sqrt{5},\sqrt{7}$成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知M(-2,-1),N(a,3),且|MN|=5,則實數(shù)a=1或-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.點P(x0,y0)是曲線y=3lnx+x+k(k∈R)圖象上一個定點,過點P的切線方程為4x-y-1=0,則實數(shù)k的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{x}$+alnx(a≠0,a∈R)
(1)當(dāng)a=1時,求函數(shù)f(x)在x=2處的切線斜率及函數(shù)f(x)的單減區(qū)間;
(2)若對于任意x∈(0,e],都有f(x)>0,求實數(shù)a的取值范圍;
(3)若函數(shù)g(x)=x(lnx-1),對于任意x1∈(0,e],總存在x2∈(0,e],使得g(x1)>f(x2),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式1≤|x+2|≤5的解集為[-7,-3]∪[-1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=2sin(2x+\frac{π}{6})$
(1)若點$P(1,-\sqrt{3})$在角α的終邊上,求$f(\frac{α}{2}-\frac{π}{12})$的值
(2)若$x∈[-\frac{π}{6},\frac{π}{3}]$,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.曲線y=x3-x2-2在點(2,2)處的切線方程為8x-y-14=0(用一般式表示).

查看答案和解析>>

同步練習(xí)冊答案