已知函數(shù)f(x)的定義域?yàn)镈.若對(duì)于任意的x1∈D,存在唯一的x2∈D,使得
f(x1)•f(x2)
=M成立,則稱函數(shù)f(x)在D上的幾何平均數(shù)為M.已知函數(shù)g(x)=3x+1(x∈[0,1]),則g(x)在區(qū)間[0,1]上的幾何平均數(shù)為
 
考點(diǎn):平均值不等式
專題:不等式的解法及應(yīng)用
分析:我們易得若函數(shù)在區(qū)間D上單調(diào)遞增,則C應(yīng)該等于函數(shù)在區(qū)間D上最大值與最小值的幾何平均數(shù),由g(x)=x,D=[0,1],代入即可得到答案.
解答: 解:根據(jù)已知中關(guān)于函數(shù)g(x)在D上的幾何平均數(shù)為C的定義,
結(jié)合g(x)=3x+1在區(qū)間[0,1]單調(diào)遞增
則x1=0時(shí),存在唯一的x2=1與之對(duì)應(yīng)C=
1×4
=2,
故答案為:2.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)單調(diào)性的性質(zhì),其中根據(jù)函數(shù)在區(qū)間上的幾何平均數(shù)的定義,判斷出C等于函數(shù)在區(qū)間D上最大值與最小值的幾何平均數(shù),是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將一顆骰子先后隨機(jī)拋擲兩次,設(shè)向上的點(diǎn)數(shù)分別為a,b,則使關(guān)于x的方程ax+b=0有整數(shù)解的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg(x2+ax-a-1)(a∈R),給出下列命題:①f(x)有最小值;②當(dāng)a=0時(shí),f(x)的值域?yàn)镽;③a=1時(shí),f(x)的定義域?yàn)椋?1,0);④若f(x)在區(qū)間[2,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是[-4,+∞).其中正確結(jié)論的序號(hào)是
 
.(填上所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,程序框圖(算法流程圖)的輸出結(jié)果
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=3,an+1=an+p•2n+1(n∈N*,p為常數(shù)),a1,a2+1,a3成等差數(shù)列.(1)求p的值和數(shù)列{an}的通項(xiàng)公式;(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,且b2=4,滿足4 Sn-n=(an-n) bn(n∈N*),求證:(1+
1
bn
 
1
2
bn
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)四棱錐的三視圖如圖所示,那么這個(gè)四棱錐最長(zhǎng)棱的棱長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)D為不等式組
x+y≤1
2x-y≥-1
x-2y≤1
表示的平面區(qū)域,點(diǎn)B(a,b)為坐標(biāo)平面xOy內(nèi)一點(diǎn),若對(duì)于區(qū)域D內(nèi)的任一點(diǎn)A(x,y),都有
OA
OB
≤1
成立,則a+b的最大值等于( 。
A、2B、1C、0D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠接到一標(biāo)識(shí)制作訂單,標(biāo)識(shí)如圖所示,分為兩部分,“T型”部分為寬為10cm 的兩個(gè)矩形相接而成,圓面部分的圓周是A,C,D,F(xiàn)的外接圓.要求如下:①“T型”部分的面積不得小于800cm2;②兩矩形的長(zhǎng)均大于外接圓半徑.為了節(jié)約成本,設(shè)計(jì)時(shí)應(yīng)盡量減小圓面的面積.此工廠的設(shè)計(jì)師,憑直覺認(rèn)為當(dāng)“T型”部分的面積取800cm2且兩矩形的長(zhǎng)相等時(shí),成本是最低的.你同意他的觀點(diǎn)嗎?試通過計(jì)算,說說你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a,y滿足
x-y+2≥0
x+y≥0
x≤1
,則z=|2x+y-4|的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案