已知函數(shù)f(x)=lg(x2+ax-a-1)(a∈R),給出下列命題:①f(x)有最小值;②當a=0時,f(x)的值域為R;③a=1時,f(x)的定義域為(-1,0);④若f(x)在區(qū)間[2,+∞)上是增函數(shù),則實數(shù)a的取值范圍是[-4,+∞).其中正確結(jié)論的序號是
 
.(填上所有正確命題的序號).
考點:對數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)如果x2+ax-a-1<0有解,可判斷函數(shù)f(x)=lg(x2+ax-a-1)(a∈R),的值域為R,無最小值,
②當a=0時求出值域為R,③a=1時,得出定義域:(-∞,-2)∪(1,+∞),④運用求解
-
a
2
≤2
22+2a-a-1>0
即可.
解答: 解:∵函數(shù)f(x)=lg(x2+ax-a-1)(a∈R),
∴①如果x2+ax-a-1<0有解,
則函數(shù)f(x)=lg(x2+ax-a-1)(a∈R),的值域為R,無最小值,故①不正確,
②當a=0時,函數(shù)f(x)=lg(x2-1)(a∈R),定義域為(-∞,-1)∪(1,+∞),值域為R,
故②正確.
③a=1時,f(x)的定義域為:(-∞,-2)∪(1,+∞),故③不正確.
④若f(x)在區(qū)間[2,+∞)上是增函數(shù),則
-
a
2
≤2
22+2a-a-1>0
解得:a>-3,
故④不正確,
故答案為:②
點評:本題考查了函數(shù)的性質(zhì),不等式考查定義域,值域問題,屬于中檔題,難度不大.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2,右焦點F與拋物線y2=4x的焦點重合.
(I)求橢圓C的標準方程;
(Ⅱ)過點(0,-
1
3
)
且斜率為k的直線l與橢圓C交于A、B兩點,求證:以AB為直徑的圓必過y軸上的一定點M,并求出點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,AF=
1
3
AB,D為BC的中點,AD與CF交于點E,若
AB
=
a
,
AC
=
b
,且
CE
=x
a
+y
b
,則x+y=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P在雙曲線
x
2
 
a
2
 
-
y
2
 
b
2
 
=1(a>0,b>0)上,F(xiàn)1,F(xiàn)2分別是雙曲線的左、右焦點∠F1PF2=90°,且△F1PF2的三條邊長之比為3:4:5.則雙曲線的離心率是(  )
A、
3
B、3
C、
5
D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱錐D-ABC中,AB=BC=2,BD=3,∠ABC=∠DBA=∠DBC=60°,E為AC的中點.
(1)求證:AC⊥平面BDE.
(2)求三棱錐D-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式|2x-1|-|x|≥1的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的左右頂點A1,A2恰好是雙曲線
x
2
 
3
-y 
2=1的左右焦點,點P(1,
3
2
)在橢圓上.
(I)求橢圓C的標準方程;
(Ⅱ)直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點M,N,若線段MN的垂直平分線恒過定點B(0,-1),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為D.若對于任意的x1∈D,存在唯一的x2∈D,使得
f(x1)•f(x2)
=M成立,則稱函數(shù)f(x)在D上的幾何平均數(shù)為M.已知函數(shù)g(x)=3x+1(x∈[0,1]),則g(x)在區(qū)間[0,1]上的幾何平均數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}各項均為正數(shù),其前n項和Sn滿足2Sn=a
 
2
n
+an(n∈N*).
(1)證明:{an}為等差數(shù)列;
(2)令bn=
lnan
a
2
n
,記{bn}的前n項和為Tn,求證:Tn
2n2-n-1
4(n+1)

查看答案和解析>>

同步練習冊答案