【題目】如圖,在四棱錐中,底面ABCD為矩形,,,側面SAD是以AD為斜邊的等腰直角三角形,且平面平面ABCD,M,N分別為AD,SC的中點.
(1)求證:平面SAB.
(2)求直線BN與平面SAB所成角的余弦值.
【答案】(1)證明見解析(2)
【解析】
(1)取SB的中點H,連接AH與NH,由平面幾何的知識可得四邊形AHNM是平行四邊形,,再由線面平行的判定即可得證;
(2)設直線BN與平面SAB所成的角為,其中,點N到平面SAB的距離為d,由題意結合線面、面面位置關系的性質與判定可得,連接SM,由面面垂直的性質可得平面ABCD,進而可得,由余弦定理求得后,利用,即可得解.
(1)如圖,取SB的中點H,連接AH與NH,
∵M,N分別為AD,SC的中點,∴且,
∴,且,
∴四邊形AHNM是平行四邊形,,
∵平面SAB,平面SAB,∴平面SAB.
(2)設直線BN與平面SAB所成的角為,其中,點N到平面SAB的距離為d,
由(1)知平面SAB,則M到平面SAB的距離也是d,
∵平面平面ABCD,平面平面,,
∴平面SAD,又平面SAB,∴平面平面SAD,
又平面平面,平面SAD內(nèi)的直線SD垂直于兩平面的交線SA,
∴平面SAB.
∵M是等腰直角三角形ADS斜邊AD的中點,所以M到平面SAB的距離d是DS的一半,
∵,∴,∴.
連接SM,CM,BM,
∵平面平面ABCD,平面SAD內(nèi)的直線SM垂直兩平面的交線AD于點M,
∴平面ABCD.
由勾股定理易得,
∴,
在中,由余弦定理得,
∴,
∴,,
∴直線BN與平面SAB所成角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為2的正方形,,為中點,點在上且平面,在延長線上,,交于,且.
(1)證明:平面;
(2)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)城鄉(xiāng)居民儲蓄存款年底余額(單位:億元)如圖所示,下列判斷一定不正確的是( )
A.城鄉(xiāng)居民儲蓄存款年底余額逐年增長
B.農(nóng)村居民的存款年底余額所占比重逐年上升
C.到2019年農(nóng)村居民存款年底總余額已超過了城鎮(zhèn)居民存款年底總余額
D.城鎮(zhèn)居民存款年底余額所占的比重逐年下降
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長為12的正方體中,已知E,F分別為棱AB,的中點,若過點,E,F的平面截正方體所得的截面為一個多邊形,則該多邊形的周長為________,該多邊形與平面,ABCD的交線所成角的余弦值為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學有教師400人,其中高中教師240人.為了了解該校教師每天課外鍛煉時間,現(xiàn)利用分層抽樣的方法從該校教師中隨機抽取了100名教師進行調(diào)查,統(tǒng)計其每天課外鍛煉時間(所有教師每天課外鍛煉時間均在分鐘內(nèi)),將統(tǒng)計數(shù)據(jù)按,,,…,分成6組,制成頻率分布直方圖如下:假設每位教師每天課外鍛煉時間相互獨立,并稱每天鍛煉時間小于20分鐘為缺乏鍛煉.
(1)試估計本校教師中缺乏鍛煉的人數(shù);
(2)從全市高中教師中隨機抽取3人,若表示每天課外鍛煉時間少于10分鐘的人數(shù),以這60名高中教師每天課外鍛煉時間的頻率代替每名高中教師每天課外鍛煉時間發(fā)生的概率,求隨機變量的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面四邊形是直角梯形,底面,,,,,為的中點.
(1)求證:平面;
(2)若直線與平面所成角的正弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】角谷猜想,也叫猜想,是由日本數(shù)學家角谷靜夫發(fā)現(xiàn)的,是指對于每一個正整數(shù),如果它是奇數(shù),則對它乘3再加1;如果它是偶數(shù),則對它除以2,如此循環(huán)最終都能夠得到1.如:取,根據(jù)上述過程,得出6,3,10,5,16,8,4,2,1,共9個數(shù).若,根據(jù)上述過程得出的整數(shù)中,隨機選取兩個不同的數(shù),則這兩個數(shù)都是偶數(shù)的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給定下列四個命題,其中真命題是( )
A.垂直于同一直線的兩條直線相互平行
B.若一個平面內(nèi)的兩條直線與另一個平面都平行,那么這兩個平面相互平行
C.垂直于同一平面的兩個平面相互平行
D.若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國農(nóng)歷的“二十四節(jié)氣”是凝結著中華民族的智慧與傳統(tǒng)文化的結晶,“二十四節(jié)氣”歌是以“春、夏、秋、冬”開始的四句詩,2016年11月30日,“二十四節(jié)氣”正式被聯(lián)合國教科文組織列入人類非物質文化遺產(chǎn),也被譽為“中國的第五大發(fā)明”.某小學三年級共有學生500名,隨機抽查100名學生并提問“二十四節(jié)氣”歌,只能說出春夏兩句的有45人,能說出春夏秋三句及其以上的有32人,據(jù)此估計該校三年級的500名學生中,對“二十四節(jié)氣”歌只能說出第一句“春”或一句也說不出的大約有( )
A.69人B.84人C.108人D.115人
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com