【題目】如圖,在棱長為12的正方體中,已知E,F分別為棱AB,的中點,若過點,E,F的平面截正方體所得的截面為一個多邊形,則該多邊形的周長為________,該多邊形與平面,ABCD的交線所成角的余弦值為________.
【答案】
【解析】
延長DC,與的延長線交于點G,連接EG,交BC于點H,延長GE,與DA的延長線交于點M,連接,交于點N.連接NE,FH,作出截面多邊形,由此易求該截面多邊形的周長;多邊形與平面,ABCD的交線分別為與,由面面平行的性質(zhì)定理得∥,則為多邊形與平面,ABCD的交線所成的角或其補角,利用余弦定理計算即可.
如圖,延長DC,與的延長線交于點G,連接EG,交BC于點H,延長GE,與DA的
延長線交于點M,連接,交于點N.連接NE,FH,
因為正方體的棱長為12,
所以.
因為∥,
所以,
所以,
所以,
同理可得,
所以,
所以,,
所以,.
易知,所以,
又,解得,
所以,,
則該多邊形的周長為.
由面面平行的性質(zhì)定理得∥,
則為多邊形與平面,ABCD的交線所成的角或其補角.
因為,所以,
所以該多邊形與平面,ABCD的交線所成角的余弦值為.
故答案為:;
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,設(shè)直線過橢圓的上頂點和右焦點,坐標(biāo)原點到直線的距離為2.
(1)求橢圓的方程.
(2)過點且斜率不為零的直線交橢圓于,兩點,在軸的正半軸上是否存在定點,使得直線,的斜率之積為非零的常數(shù)?若存在,求出定點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】哈三中總務(wù)處的老師要購買學(xué)校教學(xué)用的粉筆,并且有非常明確的判斷一盒粉筆是“優(yōu)質(zhì)產(chǎn)品”和“非優(yōu)質(zhì)產(chǎn)品”的方法.某品牌的粉筆整箱出售,每箱共有20盒,根據(jù)以往的經(jīng)驗,其中會有某些盒的粉筆為非優(yōu)質(zhì)產(chǎn)品,其余的都為優(yōu)質(zhì)產(chǎn)品.并且每箱含有0,1,2盒非優(yōu)質(zhì)產(chǎn)品粉筆的概率為0.7,0.2和0.1.為了購買該品牌的粉筆,?倓(wù)主任設(shè)計了一種購買的方案:欲買一箱粉筆,隨機查看該箱的4盒粉筆,如果沒有非優(yōu)質(zhì)產(chǎn)品,則購買,否則不購買.設(shè)“買下所查看的一箱粉筆”為事件,“箱中有件非優(yōu)質(zhì)產(chǎn)品”為事件.
(1)求,,;
(2)隨機查看該品牌粉筆某一箱中的四盒,設(shè)為非優(yōu)質(zhì)產(chǎn)品的盒數(shù),求的分布列及期望;
(3)若購買100箱該品牌粉筆,如果按照主任所設(shè)計方案購買的粉筆中,箱中每盒粉筆都是優(yōu)質(zhì)產(chǎn)品的箱數(shù)的期望比隨機購買的箱中每盒粉筆都是優(yōu)質(zhì)產(chǎn)品的箱數(shù)的期望大10,則所設(shè)計的方案有效.討論該方案是否有效.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為進(jìn)一步深化“平安校園”創(chuàng)建活動,加強校園安全教育宣傳,某高中對該校學(xué)生進(jìn)行了安全教育知識測試(滿分100分),并從中隨機抽取了200名學(xué)生的成績,經(jīng)過數(shù)據(jù)分析得到如圖1所示的頻數(shù)分布表,并繪制了得分在以及的莖葉圖,分別如圖23所示.
成績 | |||||||
頻數(shù) | 5 | 30 | 40 | 50 | 45 | 20 | 10 |
圖1
(1)求這200名同學(xué)得分的平均數(shù);(同組數(shù)據(jù)用區(qū)間中點值作代表)
(2)如果變量滿足且,則稱變量“近似滿足正態(tài)分布的概率分布”.經(jīng)計算知樣本方差為210,現(xiàn)在取和分別為樣本平均數(shù)和方差,以樣本估計總體,將頻率視為概率,如果該校學(xué)生的得分“近似滿足正態(tài)分布的概率分布”,則認(rèn)為該校的校園安全教育是成功的,否則視為不成功.試判斷該校的安全教育是否成功,并說明理由.
(3)學(xué)校決定對90分及以上的同學(xué)進(jìn)行獎勵,為了體現(xiàn)趣味性,采用抽獎的方式進(jìn)行,其中得分不低于94的同學(xué)有兩次抽獎機會,低于94的同學(xué)只有一次抽獎機會,每次抽獎的獎金及對應(yīng)的概率分別為:
獎金 | 50 | 100 |
概率 |
現(xiàn)在從不低于90同學(xué)中隨機選一名同學(xué),記其獲獎金額為,以樣本估計總體,將頻率視為概率,求的分布列和數(shù)學(xué)期望.
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是邊長為2的菱形,平面平面,,,分別是棱,的中點.
(1)求證:平面;
(2)若,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,圓:,一動圓在軸右側(cè)與軸相切,同時與圓相外切,此動圓的圓心軌跡為曲線,橢圓與曲線有相同的焦點.
(1)求曲線的方程;
(2)設(shè)曲線與橢圓相交于第一象限點,且,求橢圓的標(biāo)準(zhǔn)方程;
(3)在(2)的條件下,如果橢圓的左頂點為,過且垂直于軸的直線與橢圓交于,兩點,直線,與直線:分別交于,兩點,證明:四邊形的對角線的交點是橢圓的右頂點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD為矩形,,,側(cè)面SAD是以AD為斜邊的等腰直角三角形,且平面平面ABCD,M,N分別為AD,SC的中點.
(1)求證:平面SAB.
(2)求直線BN與平面SAB所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線y2=4x焦點F的直線l交拋物線于A、B兩點(點A在第一象限),若3,則直線l的斜率為( )
A.2B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.
(1)求橢圓的方程;
(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com